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Introduction
• We’ve built high-resolution ocean models for six 

Canadian ports & approaches

• Water level, near-surface current forecasts to support 
electronic navigation and drift prediction

• There is a need to provide uncertainty/error estimates 
with the forecasts

• Ongoing effort on uncertainty characterization:

– Model setup

– Ensemble-based approach

– Some early results

– Next steps

Vancouver Harbour surface currents

150 m

20 m

m/s
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Model setup (one port)
• The port models are free runs without 

data assimilation or nudging

• GIOPS (1/4⁰ global)

       → RIOPS (1/12⁰ regional)

        → CIOPS-W (1/36⁰ Northeast Pacific) 

           → Salish Sea 500 m

             → South Salish Sea 125 m

               → Vancouver Harbour 20 m

• Surface forced by HRDPS (2.5 km) 
atmospheric model

• Gauged and climatological runoff

• NEMO v3.6

500 m
CIOPS-W 1/36⁰ ~ 2.5 km 

125 m

Vancouver Harbour 20 m

Fraser River
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Characterizing uncertainty
• Use ensemble of hindcasts,

– Derive “climatological” model uncertainty

– May be pessimistic vs. an error-of-the-day estimate

– Check consistency with model-observation error statistics

• Precursor to potential ensemble-data assimilation system

• From perturbation tests at the 125 m domain,

– Found deterministic lateral boundary “removes” 
ensemble spread akin to restoring term

• Synthesize ensembles at 500 m, downscale for 125m & 20m

500 m

125 m
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Physics perturbations
Stochastic Parameter Perturbations (SPP) STD

Vertical mixing (avt, avm) 10%, 10%

Lateral diffusivity (ahtu, ahtv, ahtw) 10%, 10%, 10%

Lateral viscosity (ahm1, ahm2) 10%, 10%

Bottom friction (bfr) 5%

Solar radiation penetration (qsi0) 5%

Relative wind coefficient (relw) 10%

STOPACK for NEMO (Storto and Andriopoulos, 2021) 

• Online injection of perturbations
• AR(1) process with time scale τ
• 2D smoothed noise in space

• SPP:
• τ = 10 d, filter 100 passes

• SPPT:
• τ = 6 h, filter 75 passes, std 0.25
• momentum inflation 0.5, sppt_step 1

• Stochastic Kinetic Energy Backscatter (SKEB)
• Not enabled

Stochastically Perturbed Parameter Tendency (SPPT)

Lateral diffusion (traldf)

Solar radiation (traqsr)

Lateral viscosity (traldf)



6

Surface forcing perturbations
• Lack ensemble atmospheric forcing at suitable resolution

• Instead synthesize via an EOF-based method

• Used by numerous authors although details vary
      Ex: Jordà and De Mey (2010), Kim et al (2011), Ghantous et al (2020)

• Compute top N=40 modes, perturb the principal components with 
zero-mean AR(1) processes

 F = UΣVT UΣ: PCs,    Σ: singular values,   V: EOFs

 F → F + ∑N AmUm ΣmVT
m Am: unique AR(1) process per mode

• Am parameters: τ , σ
• Same across modes
• Set via model-observation analysis (autocorrelation, coherence)

Surface forcing 
components

Time scale τ Standard 
deviation σ

Surface winds u, v 18 hours 30%

Air temperature, air 
humidity, longwave 
radiation

12 hours 20%

Sea level pressure 48 hours 10%

Short wave radiation and precipitation 
not perturbed
• Could, but extra care needed to 

avoid negative values and retain 
zero-mean perturbations

Multivariate decomposition in three groups:
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Runoff perturbations Stochastic Runoff Perturbations Time scale STD

Freshwater discharge 10d 8%

Freshwater discharge temperature 10d 3%

• Apply AR(1) process to the runoff

 → Repurpose the STOPACK SPP random field by 
     applying it to the runoff data in NEMO

Ensemble experiments

Ensemble set Physics Wind Air temp, humidity, 
longwave and pressure

Runoff

E X

G X X

K X X X X

• Three experiments with increasing level of perturbations
• 10 members, three years run (2017-19)
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Spinup of ensemble spread (first 3 months)

• Temperature from a 
point in the middle of 
the domain

• 2016-12-22 start

• E: 2-3 weeks for 
STOPACK spread spinup

• G,K: less than a week

• K not very different 
from G

     → evidence that wind 
  uncertainty is key

2-3 weeks

(°
C

)
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Spinup of ensemble spread (3 years)

• E: clear seasonal signal

• G,K: similar but stronger 
signal

• Large summer signal 
likely related to 
thermocline

• Similar spread spinup in 
other variables

(°
C

)
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Spatial variability of ensemble spread (surface speed)

• Monthly means from K 
experiment over three 
years

• Hotspots of spread visible

• Increased spread in 
summer months at A

• Cold-spot of spread at 
open boundary B

B

A A
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Spatial variability of ensemble spread (surface salinity)

• Spread largest in central 
Strait of Georgia, much 
lower in Juan de Fuca 
strait

• Strong mixing region 
separates these regions
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Ensemble drift experiment

• 883 daily drift tracks Apr 2017 – Jan 2018 
derived from 170 surface drifters

• OpenDrift with 2% windage (unperturbed wind)

• Tracked for K experiment members and mean

• → Drift performance improved with mean

Experiment Separation Rates 
(km/day)

Worst ensemble member 12.90

Best ensemble member 11.91

Ensemble mean (forcing) 11.89

Mean over ensemble 
members drift scores

12.49
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Water level ensemble spread

• CRMSE is order 5 cm for non-tidal water 
level at gauges

• Spread in ssh is order 1 cm for K experiment

• K experiment has sea level pressure 
perturbed

• Broadly underdispersive
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Lateral boundary condition perturbations

• Lack ensemble forcing for lateral boundary

– Apply the EOF-perturbing method

• Perturb principal components with AR(1) 
process, top N=40 modes

• Multivariate decomposition for

– Non-tidal barotropic part

– Baroclinic part

Ensemble 
set

Physics Wind Air temp, humidity, 
longwave and 
pressure

Runoff Lateral 
boundary

E X

G X X

K X X X X

M X X X X X

Stochastic LBC Perturbations Time scale STD

Barotropic non-tidal 1d 10%

Baroclinic 1d 10%
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Water level ensemble spread

• Adding LBC perturbations raises 
spread from 1 to 2 cm
• Still underdispersive

• Scant change in other variables
• Consistent with seaward 

estuarine circulation at 
surface
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Summary
• Initial set of ensemble hindcast experiments at 500 m domain

• Successively added perturbations for physics and for surface, runoff and lateral boundary forcing

• Wind perturbations appear important

• Spread underdispersive in water level

• Next steps

– Systematic consistency analysis with observations

– Revise perturbation parameters

– Explore applying Stochastic Kinetic Energy Backscatter with STOPACK

– Explore perturbing lateral boundaries with dynamically consistent perturbations

– Longer simulation than 3 years

– Downscale to 125 m and 20 m domains
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