

Development of the Four-Dimensional Variational Global Ocean Data Assimilation System for Coupled Predictions in Japan Meteorological Agency

OceanPredict24

Nov 18, 2024 @Paris

YOSHIDA Takuma (NPDC/JMA)

FUJII Yosuke (MRI/JMA) SUMITOMO Masashi (NPDC/JMA) ISHIKAWA Ichiro (MRI/JMA)

MOVE/MRI.COM-G3: current operational system

	MOVE/MRI.COM-G3 (since Feb. 2022)		
	G3A (4DVAR analysis)	G3F (initialization of fcst.)	
Horizontal resolution	1.0° (lon)×0.3-0.5° (lat)	0.25°	
Vertical layers	60 + Bottom Boundary Layer	60	
Temperature/ salinity analysis	4DVAR+IAU	Downscales G3A with IAU ("replay")	
Sea ice concentration analysis	3DVAR+IAU	3DVAR+IAU	
Assimilated observations	In-situ T/S MGDSST (JMA-GHRSST, L4) CMEMS SLA (L3) Sea Ice Conc. (L4)	Sea Ice Conc. (L4)	
Atmospheric forcings	JRA-3Q (delayed) and Global Analysis (early)		
Assimilation window (Analysis interval)	5 days		

G3A 1 × 0.3-0.5 deg. 4DVAR analysis

G3A temperature/salinity fields are dynamically downscaled

G3F 0.25 × 0.25 deg. ocean model

Ocean & sea ice initial conditions

CPS3 coupled model for seasonal forecast

SST as boundary condition

GEPS atmospheric model for extended/subseasonal forecast

Issue of G3: effective resolution (surface current on Dec 1, 2017)

G3F (downscaling to 0.25°)

OSCAR (0.25° objective anl.)

31-day forecast (0.25° model)

MOVE-NPR (0.1° regional 4DVAR)

Monday: OSE of KaRIn/SWOT

- Wednesday: 60-year reanalysis

The midlatitude eddies in G3F are only as active as in G3A. Their activity is even lower than the model's nature (forecast).

Minor modification tested: Increment filtering in G3F downscaling

- With small-scale features represented in G3F background but not in G3A analysis, such features are dumped by the increment, resulting in over-smoothed downscaling.
- → We test applying spatial filters on G3A analysis and G3F background when calculating an increment (②).
 We expect that small-scale features in G3F background are retained and we can avoid over-smoothing.

Minor modification tested: Increment filtering in G3F downscaling

Jan 1, 2021

Zonal SSH spectra in Kuroshio Extension region averaged over 25 days

G3A (low-res 4DVAR) G3F, no filter G3F, 1-grid-scale filter G3F, 2-grid-scale filter

- © Oceanic activity increases and is closer to the nature.
- With more unconstrained small-scale features, analysis RMSE and ACC slightly degrade almost everywhere (when verified with independent in-situ observations, not shown).
- → Ultimately, we should constrain small-scale features by observations to overcome this trade-off.

Prospects for MOVE/MRI.COM-G4

	G3	G4	Cost factor
Analysis model resolution	1.0°×0.5°	0.25°	16 (8x grid points, 2x time steps)
Operational schedule for daily initialization	5 staggered streams of 5-day cycle	Single stream 1-day cycle	1/5
4DVAR iteration	30 times	10 times	1/3
Our 4DVAR uses preliminary DVAR-FGAT analysis as first-guess. This ensures analysis quality even before full convergence.	We expect enhanced analysis resolution at comparable computation cost.		

⑤ 気象庁 Japan Meteorological Agency

Т

Impact of analysis resolution: eddy activities

- * SSH including weather noise is shown for G3F and G4 while absolute dynamic topography is shown for CMEMS.
- * Bias is subtracted to account for global water mass change unrepresented in the models.

G4 reproduces meanders and eddies that are unclear in G3F. Most of such features are analyzed at true locations.

(気密に

Impact of analysis resolution on variability (T at 100m)

Blue: smaller variability than Argo Red: larger variability than Argo <u>Thinner colors are better</u>

Temperature variability in G3F is as small as in G3A. In G4, it is almost as large as observed.

* Variance ratio = STDV(Analysis anomaly) / STDV(Observed anomaly), verified with Argo floats

RMS Errors to withheld Argo (2006-2015)

G4 issue: too much noise in the tropics

The spatial structure of SSH in G4 is much improved from G3F. However, in the tropics, high-frequency noise is seen. This noise can be attributed to the shorter 1-day IAU, and the oscillation partly explains the degraded temperature analysis through false mixing.

Perturbations caused by an increment

Here is the difference between two model runs with/without increment on the first day (1-day IAU followed by a 5-day free run), showing perturbations caused by an increment.

The model's response to the increment vastly differs by latitude:

In the extratropics, perturbations remain there as vortices.

In the tropics, most perturbations propagate as equatorial waves, resulting in noisy analyses when cycled. Extra treatment is needed.

* Daily mean values at 100m depth

* The difference on the 1st day is multiplied by two, to account for incomplete IAU.

Another effort: direct assimilation of L3 SST

- To incorporate satellite SST observations, operational MOVE-G3 assimilates MGDSST (level 4) with in-situ T/S observations.
- However, assimilation of L4 data is suboptimal because observation coverage cannot be considered, and interpolated observations are assimilated as if they were real observations.
- In addition, near-real-time MGDSST, only using past information, is known for delayed response to rapid SST changes (Ito 2022, JSMJ).
- → We test assimilation of level-3 (collated) SST from AVHRR (NOAA-19), VIIRS (S-NPP), and AMSR2 (GCOM-W).
 - L3 data here are the same intermediate data used for near-real-time MGDSST production. QC'ed and bias-corrected daily mean SST for each satellite is available.

Result: direct assimilation of L3 SST

RMSD G3A SST assimilating L4

RMSD G3A SST assimilating L3

Global RMSD is reduced by ~5% by assimilating L3 instead of L4. The reduction is evident in active regions including Kuroshio, Gulf Stream, TIW, Agulhas, and Falkland.

Green: auto-correlation, assimilating L4 Blue: auto-correlation, assimilating L3 Orange: lag-correlation between experiments

- * RMSDs here are calculated with respect to GHRSST GMPE (daily multi-product median).
- * Experiment period: May 1 Nov 6, 2022
- * Operational MGDSST was updated in May 2023, and its response to rapid SST change was improved.

Summary

- JMA is operating MOVE/MRI.COM-G3, which combines global ocean 4DVAR and dynamical downscaling to a quater-degree model.
 - As a minor modification, spatial filtering of the downscaling increments is tested and confirmed to enhance effective resolution.
- JMA is now developing a new ocean analysis/reanalysis system, MOVE/MRI.COM-G4, for initializing coupled forecasts. It features 4DVAR with an eddy-permitting 0.25° model at a moderate computation cost.
- Experiments show a better representation of small-scale structures globally, and analysis error is smaller in the mid-latitudes.
- However, tropical analysis suffers from high-frequency noise that cannot be filtered with the shorter 1-day IAU. Reducing this noise is future work.
- We also test direct assimilation of level-3 SST instead of level-4, where we get reduced analysis errors and earlier response to SST changes.