Development of an Ocean Forecast System for the Western South Atlantic Ocean

Luana F. Bueno¹², Afonso M. Paiva¹, Ana Carine R. Lara¹, Aron. F.C. Nunes¹, Mariela Gabioux¹, Bruno P. Siqueira¹, Tayanne Pires Ferreira¹, Fernando D. Barberini¹, Francisco L.P. de Moraes¹, Ana Caroline V. Lemos¹, Manuel N. Zau¹

¹ Physical Oceanography Laboratory - LOF/COPPE, Program of Ocean Engineering, Federal University of Rio de Janeiro, Brazil

² Senior Ocean Modeller, Fugro GB Limited, UK

021 United Nations Decade of Ocean Science for Sustainable Development

Western Boundary Currents √(WBCs)

✓ NBC & NBUC: ✓ North Brazil Current and Undercurrent

✓ Brazil Current & Intermediate WB Current ✓ BC-IWBC system

✓ **DWBC** – Deep Western Boundary Current

Large scale (O 10³ km)

Large scale (O 10³ km)

✓ Western Boundary Currents ✓ (WBCs)

NBC & NBUC:
 North Brazil Current and Undercurrent

Brazil Current & Intermediate WB Current BC-IWBC system

✓ DWBC – Deep Western Boundary Current

Source: BIO, 2015.

Western Boundary Currents √(WBCs)

✓ NBC & NBUC: North Brazil Current and Undercurrent

✓ Brazil Current & Intermediate WB Current ✓ BC-IWBC system

✓ **DWBC** – Deep Western Boundary Current

Large scale (O 10³ km)

Mesoscale (O 10² km)

 Arrival of westward propagating eddies from remote origin – Agulhas Rings (Guerra et al., 2018; Laxenaire et al., 2018)

Meandering of Brazil Current, eddy formation, eventual ring detachment

Source: BIO, 2015.

Source: BIO, 2015.

Mesoscale (O 10² km)

 Arrival of westward propagating eddies from remote origin – Agulhas Rings (Guerra et al., 2018; Laxenaire et al., 2018)

Meandering of Brazil Current, eddy formation, eventual ring detachment

Bathymetry

✓ Vitória-Trindade Ridge

✓ Barrier to the WBCs

40°W

25

Challenges: high variability of dynamical regimes

Bathymetry

✓ continental shelf of varying width (from ~20 to ~250 km)

✓ Propagatoin of CTWs

Objective:

To develop an openaccess ocean forecast system, providing 3D information on large and mesoscale ocean circulation, plus tides, along the Western South Atlantic Ocean

Source: BIO, 2015.

LSE36-LOF/COPPE Ocean Forecast System

HyCOM - Hybrid Coordinate Ocean Model

(Bleck et al., 2002)
 1/36 ⁰ horizontal resolution (~2,5 km)
 32 hybrid layers
 ETOPO1 + measurements from Brazil Navy

✓ Data Assimilation: T-SIS V2.0

Tendral Statistics Interpolation System

(Srinivasan et al., 2021) near-real-time data availability: *in situ* ✓ remote sensing: **SST & SLA**

√ Boundary Condition

✓ GOFS 3.1: 1/12° Global Ocean F. System TPXO9.v5 tides

✓ Atmospheric Forcing

✓ GFS: Global Forecast Systemcean Predict 2024

LSE36-LOF/COPPE Ocean Forecast System

LSE36-LOF/COPPE Ocean Forecast System

DA performance: assimilated remote observations

DA performance: assimilated remote observations

Ocean Predict 2024

LSE36-LOF/COPPE System Predictability:

1

High Frequency SST

$$SKILL = \frac{2(1+R)}{\left(\frac{\sigma_m}{\sigma_d} + \frac{\sigma_d}{\sigma_m}\right)^2}$$

R = Correlation coefficient $\sigma_m = Model results standard deviation$ $\sigma_d = Data standard deviation$

Final remarks:

LSE36-LOF/COPPE forecast system simulates the main features of the local ocean circulation, both their mean and variability for all important frequency bands observed in the data.

✓ Data assimilation was proven effective in reducing certain model biases, and particularly in accurately positioning mesoscale features, such as the Brazil Current meanders and eddies.

The generated forecasts are on par, and at times outperform, the available global forecast systems.

Physical Oceanography Laboratory LOF/COPPE

Thank you!

E-mail: luferraz06@hotmail.com

2021 United Nations Decade of Ocean Science for Sustainable Development