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Is Earth Science 
a Big Data 
Science?



Is Oceanography
a “big data” 
science?

Yes & No …



(colors refer to
depth ranges)

Observational sampling
coverage for ocean
temperature in the 
upper 2000 m
1950 – 2010
(mean ocean depth:
~ 3900 m)

Abraham et al., Rev. Geophys. (2013)

Wunsch, Annual Reviews (2016)

Oceanography: 
A sparse data 
problem …



Two incomplete
knowledge
reservoirs

an eclectic, patchy, heterogeneous 
observing system

numerical models

that require 

uncertain 

inputs



Parameter & 
state estimation

The data assimilation / inverse 
method is learning from …

• a set of usually sparse, heterogeneous 
observations 

• … AND known (albeit uncertain) 
physics/dynamics,

• … by solving a gigantic least-squares 
model-data misfit minimization



What do we mean by 

“Learning”?



Initial
cond.

Boundary conditions (surface / bottom / lateral)
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Param.
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Param.
scheme n… …

Learn …



Initial
cond.

Boundary condition / air-ice-ocean fluxes

Physical model

Param.
scheme 1
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Param.
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Learn model initial conditions

state 
at

T = 0
FORECAST @ T > 0

Find best initial conditions 
that will produce optimal 
forecast …

The filtering 
problem of optimal 
estimation & control
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The filtering 
problem of optimal 
estimation & control

Initialization for 
prediction/extrapolation 
as practiced in short-term

weather & ocean 
prediction
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Learn model initial conditions

state 
at

T = 0
FORECAST @ T > 0

Find best initial conditions 
that will produce optimal 
forecast …

The filtering 
problem of optimal 
estimation & control

Initialization for 
prediction/extrapolation 
as practiced in 

interannual to 
decadal prediction

Meehl et al.
BAMS (2014)



Initial
cond.

Boundary condition / air-ice-ocean fluxes

Physical model

Param.
scheme 1
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scheme i
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Learn model time-evolving state

state 
at

T = 0
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at

T = 1
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at

T = N
……

state 
at

T = i

Find model inputs (in red) 
that produce the best 
dynamically consistent state

The smoothing 
problem of optimal 
estimation & control
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The smoothing 
problem of optimal 
estimation & control

State & parameter estimation for:
• Interpolation/reconstruction
• (transient calibration)



Initial
cond.

Boundary condition / air-ice-ocean fluxes

Physical model

Param.
scheme 1

Param.
scheme i

Param.
scheme n… …

Learn model parameters

Physical model has many 
empirical parameters:
• constitutive laws
• subgrid-scale 

parameterization schemes



Initial
cond.

Boundary condition / air-ice-ocean fluxes

Physical model

Param.
scheme 1
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scheme i
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scheme n… …

Learn model parameters

Physical model has many 
empirical parameters:
• constitutive laws
• subgrid-scale 

parameterization schemes

parameter estimation 
using observations is 
essential
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Physical model
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Neural Network 
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Learn surrogate (e.g., NN) of model’s parameterization scheme

Parameterization scheme(s) 
is replaced by neural network

NN is trained on high-
fidelity simulation 
data which resolve 
scales to be 
parameterized



Initial
cond.

Boundary condition / air-ice-ocean fluxes

Physical model

Param.
scheme 1

Neural Network 
for scheme #i

Param.
scheme n… …

Learn surrogate (e.g., NN) of model’s parameterization scheme

Toms et al. (2020)

=

Parameterization scheme(s) 
is replaced by neural network

NN is trained on high-
fidelity simulation 
data which resolve 
scales to be 
parameterized

a priori / offline learning
Frezat et al. (2019), Zanna & Bolton  (2021)
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Learn hybrid physical/surrogate (NN) model

Parameterization scheme(s) 
is replaced by neural network

Training of the NN is 
part of “training” of 
the physical model
on state variables
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Initial
cond.

Boundary condition / air-ice-ocean fluxes

Physical model

Param.
scheme 1

Neural Network 
for scheme #i

Param.
scheme n… …

Learn hybrid physical/surrogate (NN) model

Parameterization scheme(s) 
is replaced by neural network

Training of the NN is 
part of “training” of 
the physical model
on state variables

a posteriori / full-model
/ online / end-to-end
learning

state 
at

T = 0
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at
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……
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+



Learn surrogate (e.g., NN) of the entire physical model

state 
at

T = 0

state 
at

T = 1

state 
at

T = 2

state 
at

T = N
……

state 
at

T = i

Physical model is replaced 
entirely by surrogate model, 
e.g., neural network (NN):

purely data-driven learning

Weights of neural 
network trained on 
simulated model states, either 
• high-fidelity models 

or
• reanalyses



A key unifying computational framework of “learning from data”

Gradient-based optimization:

• inversion (physical models)

– seek uncertain input / 
control variables / 
parameters

• training (neural networks)

– seek uncertain weights of 
NN representation

Adjoint / backpropagation

essential tool for computing 

high-dimensional gradients!



Can we integrate the 
surrogate model training 

within full-model calibration

Full-model 
learning



An end-to-end adjoint enables full-model calibration & initialization

Initial
cond.

Surface boundary condition / air-sea flux param.

Dynamical core

surrogate
model 1 … …surrogate

model i
surrogate
model n

Here: use of full-model differentiable programming to
• replace parts of model by appropriate surrogates
• use all available observations to train/calibrate all uncertain variables
• combines inverse modeling and ML in end-to-end learning

relies on general-purpose automatic differentiation (AD)



https://DJ4Earth.github.io

NSF CSSI: DJ4Earth 

Convergence of Bayesian inverse 
methods and scientific machine learning 

through universal differentiable programming



Since 2023 the idea of differentiable programming has taken off …
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Since 2023 the idea of differentiable programming has taken off …



Differentiating a GPU-enabled
climate model in Julia

Building on CliMA
Harness next-gen. 

compute architecture



● Finite volume, rotating, stratified fluids 
model for geophysical fluid dynamics (GFD).

● Written from scratch in Julia
● Multiple simulation options.
● GPU and CPU via kernel abstractions
● Parallelize using MPI.jl and multi-threading

https://github.com/clima/Oceananigans.jl 

ClimaOcean.jl: 
Ocean model component of the Climate Model Alliance (CliMA) model  



Differentiable programming for full-model / end-to-end learning

Differentiating GPU-enabled ocean model 

in Julia via the AD tool Enzyme.jl 

Oceananigans.jl 

(Silvestri et al., arXiv, 2024)

Moses, Churavy, et al., SC’21



Three initial Earth system applications

Ocean Sea ice Ice sheets

• Bringing together concepts from …

– …big data science   &   sparse data science

– …computer science  &  computational science

– …scientific machine learning &  simulation-based science

• Sensitivity/gradient information is a powerful ingredient; obtained via

– differentiable programming

– general-purpose automatic differentiation (AD)

S. Williamson         J. Kump             N. Loose           S. Silvestri         G. Wagner             C. Hill            M. Morlighem        C. Gong



Thank you!

In
 p

a
rt

n
e

rs
h

ip
w

it
h


	Diapositive 1 Learning from (sparse) observations  through the lens of models
	Diapositive 2 Is Earth Science  a Big Data  Science?
	Diapositive 3 Is Oceanography a “big data” science?
	Diapositive 4 Oceanography:  A sparse data  problem …
	Diapositive 5 Two incomplete knowledge reservoirs
	Diapositive 6 Parameter & state estimation
	Diapositive 7 What do we mean by  “Learning”?
	Diapositive 8
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23 A key unifying computational framework of “learning from data”
	Diapositive 24 Can we integrate the surrogate model training within full-model calibration
	Diapositive 25 An end-to-end adjoint enables full-model calibration & initialization
	Diapositive 26
	Diapositive 27 Since 2023 the idea of differentiable programming has taken off …
	Diapositive 28 Since 2023 the idea of differentiable programming has taken off …
	Diapositive 29 Since 2023 the idea of differentiable programming has taken off …
	Diapositive 30 Since 2023 the idea of differentiable programming has taken off …
	Diapositive 31 Differentiating a GPU-enabled climate model in Julia
	Diapositive 32 https://github.com/clima/Oceananigans.jl 
	Diapositive 33 Differentiable programming for full-model / end-to-end learning
	Diapositive 35 Three initial Earth system applications
	Diapositive 37

