

Identifying spatial and temporal oceanic scales constrained by existing and future observations

F. Gasparin^{1,*}, E. Rémy¹, R. Balakrishnan^{1,**}, J.M. Lellouche¹, S. Cravatte², G. Ruggiero¹

1 Mercator Ocean International, Toulouse, France, 2 Université de Toulouse, LEGOS (IRD/UPS/CNES/CNRS), Nouméa, New Caledonia

* Now at Université de Toulouse, LEGOS (IRD/UPS/CNES/ CNRS), France

** Now at, Indian National Center for Ocean Information Services (INCOIS), INDIA

mercator-ocean.eu/marine.copernicus.eu

Relevance of ocean observations for operational systems ?

Recurring evaluation needed due to :

the continuous development of oceanic models and data assimilation techniques the increased diversity of assimilated in situ platforms

But, more and more difficult

to establish how information from observations is used

to determine the utility/relevance of a change of the global ocean observing system on ocean analyses.

Main results from two different approaches recently published (almost)

1. <u>Observing System Simulation Experiments</u> to disentangle in situ and satellite information (H2020 Eurosea project, 2019-2023)

Gasparin, Lellouche, , Cravatte, Ruggiero, Rohith, Le Traon, & Remy (2023). On the control of **spatial and temporal oceanic scales** by existing and future observing systems: An observing system simulation experiment approach. Frontiers in Marine Science, 10, 1021650.

2. Comparison of the GLORYS12 reanalysis and its twin-free version to investigate oceanic processes at intraseasonal scales Rohith, Gasparin, Ruggiero, Remy, Cravatte. On the **intraseasonal oceanic processes** constrained by data assimilation: a case study of the Tropical Pacific (In revision, Monthly Weather Review)

1. <u>Observing System Simulation Experiments</u> to disentangle in situ and satellite information (H2020 Eurosea project, 2019-2023)

Gasparin, Lellouche, , Cravatte, Ruggiero, Rohith, Le Traon, & Remy (2023). On the control of **spatial and temporal oceanic scales** by existing and future observing systems: An observing system simulation experiment approach. Frontiers in Marine Science, 10, 1021650.

Design Experiments

OSSE system:

- Nature Run : Free version of GLORYS12 (1/12°)
- Assimilation system : ¼° global Mercator Ocean system
- Synthetic obs. : In situ (Argo, moorings), SST, SSH

Experiments :

- 2-yr OSSE experiments (2016-2017)
- 3 OSSE to assess <u>existing</u> observing system components
- 3 OSSE to assess <u>extensions</u> (Argo & Tropical moorings; Oceanobs 19) – NOT SHOWN TODAY

Calibration of realistic experiments :

- Synthetic observation error (Gasparin et al., 2019)
- Similar distance between

NOMINAL & FREE and GLORYS12 & FREEGLORYS12 NOMINAL & Obs. and GLORYS12 & Obs.

Numerical experiments to evaluate the nominal design

FREE	No data assimilation
ONLYSITU	Only Argo and Moorings
ONLYSAT	Only SST and altimetry
NOMINAL	Argo, Mooring, SST, altimetry

Variability amplitude for various scales

Standard deviation of the daily steric height (SH, cm) from the FREE experiment ((a) spatial map, (b,c) zonal-average).

Residual error from the **non-assimilated** simulation (FREE)

• Intermediate scales

Strong errors and higher than the signal

• Large scales :

Smaller errors and lower than the signal

Amplitude of the distributed differently across scales compared to the signal amplitude

Residual error from the OSSE with satellites assimilation only (SAT)

- Intermediate scales
 Strong error reduction
- Large scales : Small error reduction

Impacts of the various observing system components in depth

Globally averaged % of represented variance of the Nature Run for subsurface T/S

2. Comparison <u>of the GLORYS12 reanalysis and its twin-free version</u> to investigate oceanic processes at intraseasonal scales

Rohith, Gasparin, Ruggiero, Remy, Cravatte. On the **intraseasonal oceanic processes** constrained by data assimilation: a case study of the Tropical Pacific (In revision, Monthly Weather Review)

Both altimetry and moorings capture oceanic subseasonal variability

Shading (AVISO SLA) dots (Moorings 0/300 SH)

- Altimetry : global coverage + intraseasonal and longer timescales
- Moorings : point-wise locations + entire frequency spectrum

Evaluating coherency (and phase-not shown) at intraseasonal scales (20-90 days)

- Both FREEGLORYS12 and GLORYS12 resolve intraseasonal variability along the equator
- Significant improvement off the equator in the Tropical Instability Wave (TIW) area.
- Slight improvement in high-frequency oceanic processes in GLORYS12 (not shown)

Sea-level energy distribution in wavenumber and frequency space

Propagation speed of Tropical Instability Waves

Time-longitude plots of SLA along 5°N latitude for the TIW box

- TIWs propagate at 50 cm/s in observed & GLORYS12
- Slower propagation in FREEGLORYS12 at 43 cm/s.

How does DA improve TIW propagation speed ?

1. Modifying background stratification ?

2. Directly forcing faster anomaly movement ?

Westward propagation of DA increments at 50 cm/s More realistic mean oceanic stratification

Relative contribution of direct/indirect is still an open question

Conclusion

- The contribution of ocean observations shows scale-dependent characteristics, with a significant impact observed at intraseasonal scales.
- The net effect on intraseasonal scales arises from both direct (local increments) and indirect (background conditions) influences (still open question).
- Given the potential fragility of ocean observing systems in the coming decade, it is essential to **sustain these activities** in order to anticipate any changes in the ocean observing system.