

SST Analysis and its Application

Liying Wan, Guimei Liu, Qinglong Yu and Zhijie Li National Marine Environmental Forecasting Center Nov 21, 2024

Outline

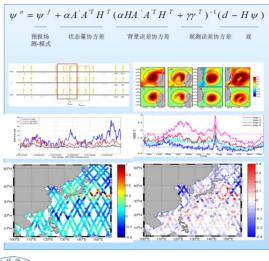
01 Backgrouds

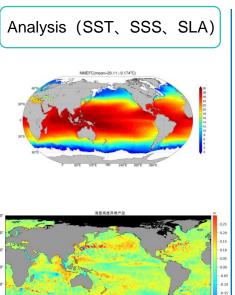
02 SST Fusion Analysis

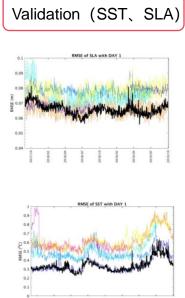
03 Al Forecast

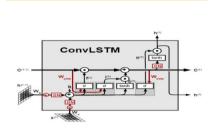
04 Marine Heat Waves

05 Future plan

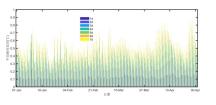




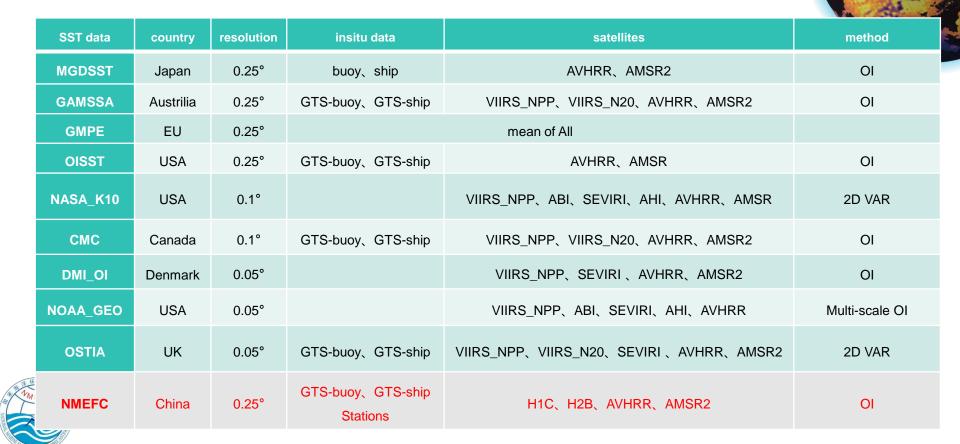




Data assimilation (SST, SLA)



Artificial Intelligence (SST)

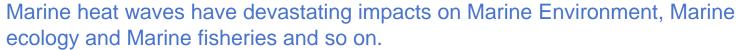

Applications in Ocean Modeling

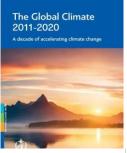


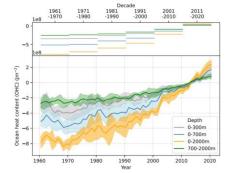


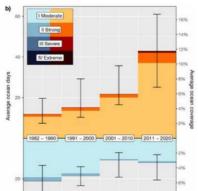
	large grid	Al grid	regions
grid	1143	250000	18
resolution	25km	10km	all
update time	8:00	8:00 16:00	8:00
time scale	3h	3h	1d

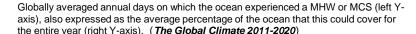
	unit	island	beach
number	213	35	/
resolution	site	site	site
update time	8:00	8:00	16:00
time scale	1h	1d	1d





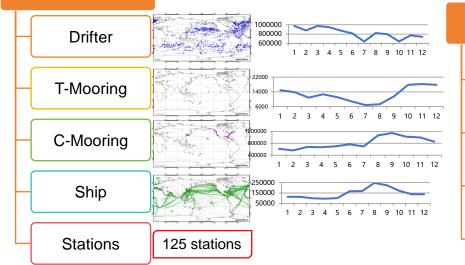


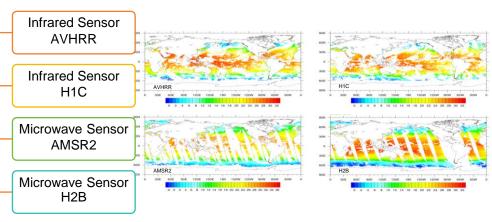




- ➤ Over the past 60 years, the global ocean heat content has continued to increase, and the rate of ocean warming has increased significantly in the past 20 years.
- Globally averaged annual days on which the ocean experienced a MHW also increased significantly.
- ➤ In Feb. 2024, NOAA reported that in the past 12 months, MHWs caused more than 54% of the world's coral reef areas to suffer bleaching, affecting vast areas of ocean in at least 53 countries and territories;
- ➤ In 2018, the MHW event in Bohai Sea caused the death of a large number of sea cucumbers, and the direct economic loss of 6.87 billion yuan.

Outline


- **01** Backgrouds
- **02** SST Fusion Analysis
- 03 Al Forecast
- 04 Marine Heat Waves
- 05 Future plan



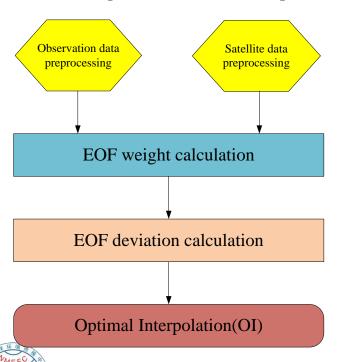
In-situ Data

Satellites

Chatial

Data Prepare

Instrument	Satellite	Producer	Data Level	Spatial Resolution
COCTS	HY-1C	NSOAS	L3	9km
CMR	HY-2B	NSOAS	L3	25km
AVHRR	MetOp-B	OSI SAF	L2P	4km
AMSR	GCOM-W	REMSS	L2P	25km



Optimal Interpolation

Assuming that background values, observed values, and analyzed values are unbiased estimates

$$r_k = \sum_{i=1}^N w_{ik} q_i$$

The horizontal correlation of background field error satisfies the exponential decrease with the increase of horizontal distance

$$\rho(r,t) = \left(1 - \frac{r_a r_b}{ab}\right) exp\left(-\frac{r_a r_b}{ab}\right)$$

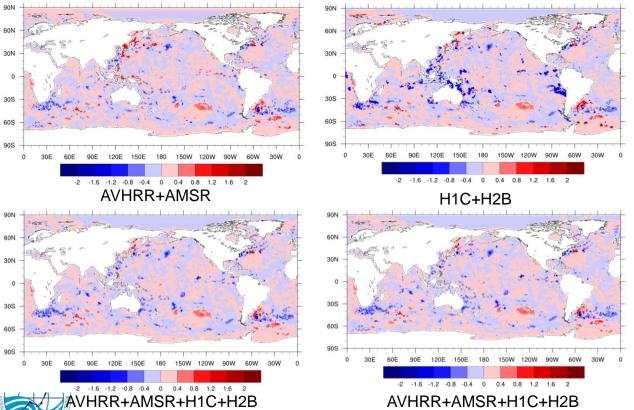
a: correlation scales along longitude, 200 kmb: correlation scales along latitude, 150 km

Version 1

Different satellite data	Different in-situ data	
AVHRR、AMSR	GTS in-situ	
H1C、H2B		
AVHRR、AMSR、H1C、H2B	GTS in-situ、Chinese station in-situ	

The satellite data control group: Satellites data respectively.

Observation data control group: GTS data and Chinese stations data respectively.

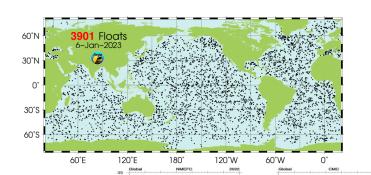


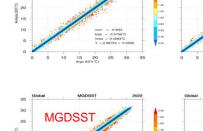
GTS in-situ

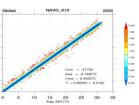
AVHRR+AMSR+H1C+H2B

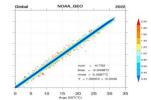
The addition of in-situ data from Chinese stations has improved the fusion results near the coastal areas of China.

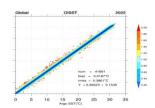
GTS + Chinese station in-situ

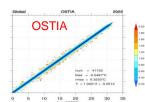


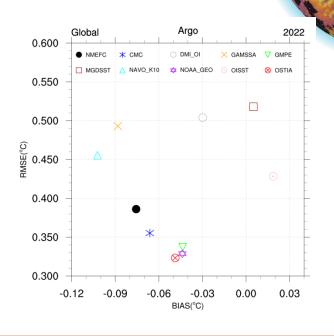

Compared with other SST data sets




NMEFC

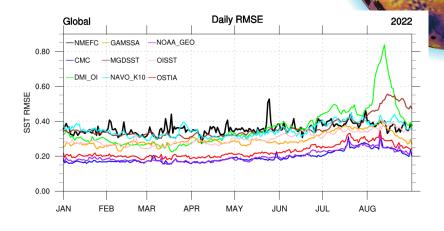

The analysis was compared using Argo surface SST data, from iQuam. Total 9 sets, which were compared with GMPE products.


GMPE products were proposed the multi product ensemble product in GHRSST in 2012. GMPE had a horizontal resolution of 0.25 degree, and different SST fusion products were interpolated into the same resolution grid. At each grid point, the ranking of different fusion products was taken as the median value, rather than the mean value. GMPE products had advantages such as smaller errors among different fusion products.



No.	Analysis	Bias	RMSE
1	OSTIA	-0.0487	0.3233
2	NOAA_GEO	-0.0438	0.3287
3	GMPE	-0.0436	0.3371
4	CMC	-0.0662	0.3552
5	NMEFC	-0.0756	0.3861
6	OISST	0.0187	0.4183
7	NAVO_K10	-0.1022	0.4555
8	GAMSSA	-0.0882	0.4931
9	DMI_OI	-0.0298	0.504
10	MGDSST	0.0051	0.5180

Through the analysis of bias and the RMSE distribution diagram between SST fusion products and Argo in-situ data, the RMSE ranges are from 0.3233 (OSTIA) to 0.5180 (MGDSST). The RMSE between NMEFC fusion products and Argo in-situ data is 0.3861, which is at the middle level of comparative analysis of SST products, ranking fifth out of 10 fusion products.



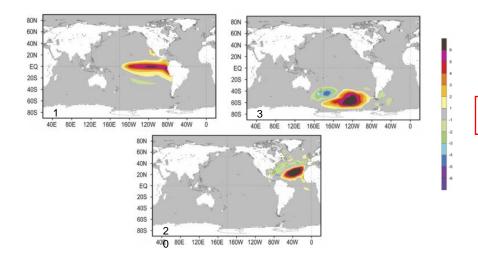
No.	Analysis	Bias	RMSE
1	CMC	-0.0131	0.1579
2	NOAA_GE	-0.0013	0.1687
	0		
3	OSTIA	-0.0093	0.1855
4	GAMSSA	-0.0311	0.2121
5	OISST	0.0538	0.2590
6	NMEFC	-0.0445	0.3040
7	MGDSST	0.0436	0.31
8	DMI_OI	0.0222	0.3113
9	NAVO_K10	-0.0507	0.3199

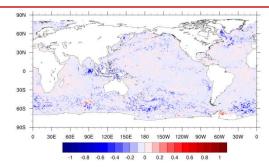
Analysing the daily variation of the RMSE of each SST analysis product, it is found that the daily variation of the RMSE of NMEFC fusion products is at the intermediate level.

- Resolution 1/4 degree
- Accuracy is below middle
- In the optimal interpolation algorithm, B is steady

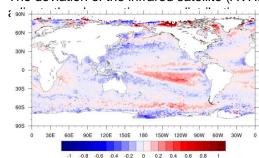
Version 1

- Resolution increased to 1/10 degree.
- Using variational algorithm, the error variance of background field changes in space
 - Time variation deviation correction algorithm




Observation deviation adjustment

Based on 20 years of daily SST data from OSTIA (2002-2021), the top 25 global (SST) modes are obtained by using EOF.



The 3rd mode covers the Southern Ocean, and observation data are scarce, so it is not used for satellite data deviation adjustment.

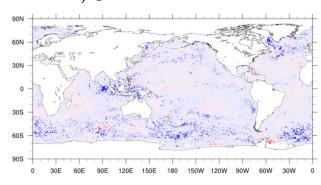
Each satellite product is adjusted for deviation Deviation adjustment mode: 2DVAR Deviation background field error variance: 0.1

The deviation of the infrared satellite (AVHRR and H1C)

The deviation of the microwave satellite (AMSR and

Background errors relaxed to Climatology

The background error matrix is constructed by relaxing the background errors to the climatology, and the covariance matrix of uncorrelated observation error is constructed by sparring, which is also the method used by various organizations for SST data fusion.


The background errors is relaxed to the climatology, and the non-Gaussian distribution errors are filtered out by Gaussian filter. The conventional Gaussian filter does not consider the existence of NAN value of horizontal distribution, and the kernel function of Gaussian filter is rewritten.

Variance of Background errors

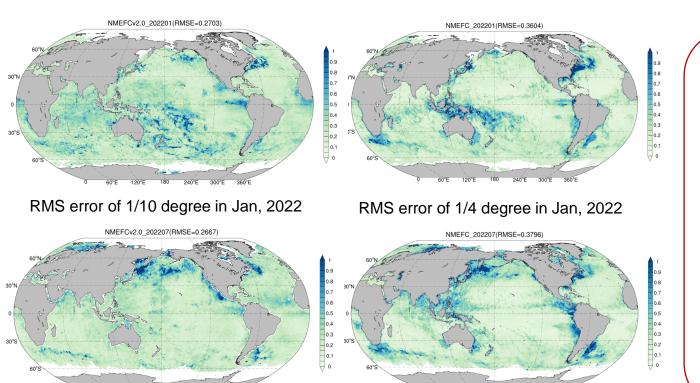
Innovation diagnostics (Desroziers2005)

$$\left(\widetilde{\sigma_i^{\mathrm{b}}}\right)^2 = (\mathbf{d}_{\mathrm{b}}^{\mathrm{a}})_i^{\mathrm{T}} (\mathbf{d}_{\mathrm{b}}^{\mathrm{o}})_i / p_i$$

$$= \sum_{j=1}^{p_i} (y_j^{\mathrm{a}} - y_j^{\mathrm{b}}) (y_j^{\mathrm{o}} - y_j^{\mathrm{b}}) / p_i$$

Solar altitude angle calculation

This product calculates foundation SST, so it does not take into account satellite observations with significant diurnal variation, so it determines the day and night observation data by calculating the solar altitude Angle.



error of 1/10 degree in Jul, 2022

RMS error of 1/4 degree in Jul, 2022

By comparing with the previous 1/4 degree product, the RMS error of 1/4 degree in January 2022 was 0.3604, that of the 1/10 degree variational product (NMEFCv2.0) was 0.2703, and the RMS error was reduced by 0.0901. In July 2022, the RMS error of the global 1/4 degree was 0.3796, that of the 1/10degree variational product (NMEFCv2.0) was 0.2667, and RMS error was reduced by 0.1129.

Outline

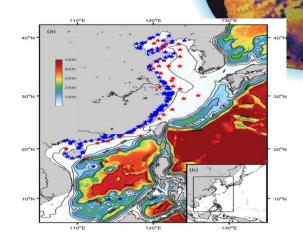
01 Backgrouds

02 SST Fusion Analysis

03 Al Forecast

04 Marine Heat Waves

05 Future plan

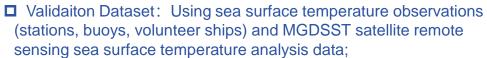


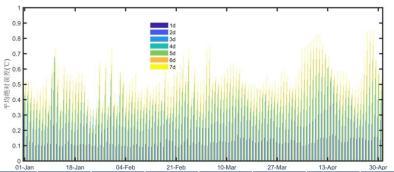
- Long short-term memory (LSTM) is a special RNN, mainly to solve the problem of gradient disappearance and gradient explosion during long sequence training. Compared with ordinary RNN, LSTM can have better performance in longer sequences.
- □ ConvLSTM is an extension of LSTM. The ConvLSTM laver not only retains the advantages of LSTM, but also applic convolutional structure.

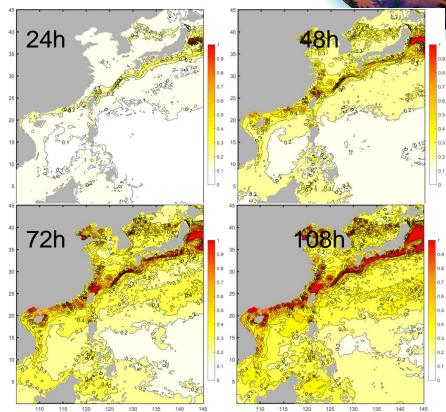
□Observation data:

- Buoys and stations: based on Python to improve the collection, processing and fusion of offshore observation data.
- ☐ Meteorological elements: ERA5 re-analysis data, including temperature, pressure, specific humidity, net short-wave radiation, net long-wave radiation, wind speed, wind direction, precipitation and other eight elements.
- ☐ Satellite remote sensing of sea surface temperature: OSTIA and NMEFC SST

Region	105°~145.0°E, 0°N~45.0°N
Resolution	10km
Start	08/16 (Beijing Time)
Time interval	every 3 h
Validity	168 h
Format	NetCDF (180M/time)

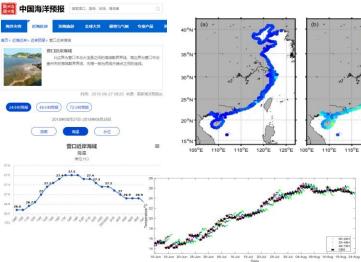


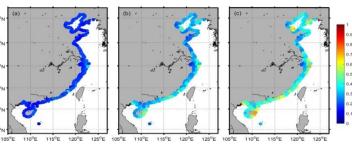




- □ Validation Periods: January 1st to May 1st,2022
- □ Validation Results: 24-hour forecast RMSE is less than 0.2°C; The3-day forecast RMSE is less than 0.5°C; The 7-day forecast RMSE is less than 0.8°C.

	1Day	2Day	3Day	4Day	5Day	6Day	7Day
AE	0.12	0.24	0.33	0.40	0.45	0.50	0.55
RMSE	0.18	0.37	0.48	0.57	0.64	0.71	0.77





Application of AI forecasting products

- ☐ The AI grid SST forecast products have been widely used in offshore China, including near-shore base unit forecast, island SST forecast, city SST forecast, beach SST forecast and resort SST forecast.
- ☐ The mean absolute error of urban SST forecast decreased from 0.266°C in 2018 to 0.189°C in 2020, with an improvement of 28.9%.
- ☐ The MAE of 0~24 hours is less than 0.2°C.

Name	Basic	Fishin	Al	Island	Seas	Bathing
Name	Units	g Grid	Grid	ISIAITU	Seas	beach
Points	213	1143	25万+	35	18	1
Distanc e Res.	Stations	25km	10km	Stations	Area	Stations
Update	8:00	8:00	8:00 16:00	8:00	8:00	16:00
Time Res.	1h	3h	3h	1d	1d	1d

leadin	0~2	24~4	48~
g time	4h	8h	72h
MAE	0.17	0.30	0.38

Outline

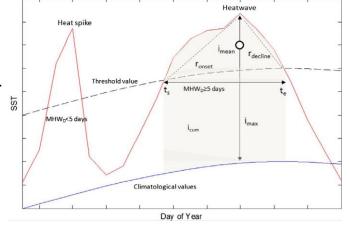
01 Backgrouds

02 SST Fusion Analysis

03 Al Forecast

04 Marine Heat Waves

05 Future plan

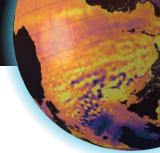


□ Definition of Marine Heat Wave (MHW)

A MHW is defined as a "discrete prolonged anomalously warm water event at a particular location". (Hobday et al., 2016, Prog. Oceanogr.)

■ Metrics to characterise a MHW

- Frequency: the annual number of MHW events.
- **Duration**: Consecutive period of time that temperature exceeds the threshold.
- Total days: the annual total MHWs days.
- **Maximum intensity** (i_{max}): highest temperature anomaly value during the MHW.
- **Mean intensity** (i_{mean}): mean temperature anomaly during the MHW.



□ Data

① OSTIA_Rep

Name: Global Ocean OSTIA Sea
 Surface Temperature and Sea ice
 Reprocessed

• Aim: Calculating SST climatology

• Time scale: 1992~2021

• **Longitude**: 105.05°E ~ 145.05°E

• Latitude: 0.05°N~45.05°N

• Time resolution: once a day

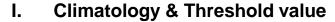
• Spatial resolution:1/20°

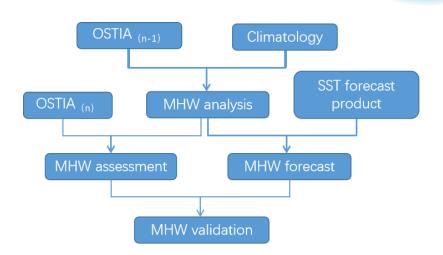
② OSTIA_Ana

 Name: Global Ocean OSTIA Sea Surface Temperature and Sea ice Analysis

Aim: MHW assessment

Name	Global Ocean OSTIA Sea Surface Temperature and Sea ice Reprocessed(OSTIA_Rep)			
Nume	Global Ocean OSTIA Sea Surface Temperature and Sea ice			
	Analysis(OSTIA_Ana)			
ID	SST_GLO_SST_L4_REP_OBSERVATIONS_010_011(OSTIA_Rep)			
טו	SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001(OSTIA_Ana)			
Data source	Satellite observation			
Spatial cover	Lat -89.97° ~ 89.97° Lon-179.98° ~ 179.98°			
Rresolution	0.05°×0.05°			
	1981.10.01~2022.05.31(OSTIA_Rep)			
Time scale	2007.01 till now(OSTIA_Ana)			
variable	SST			
Time interval	once a day			
Format	NetCDF-4			
Orgnization	Met Office(UK)			





The climatology was calculated based on OSTIArep data from 1991 to 2020, and the 90th percentile for each calendar day is calculated using daily SST over an 11-day window, centered on data for all years of the climate state period.

II. Process

- The MHW analysis data is obtained based on the previous day's OSTIA analysis data and climatology SST.
- The analysis data is updated to obtain the MHW assessment data.
- MHW assessment products will be used for validating the forecast productions.

China coastal sea and adjacent offshore waters

□ Forecast period:

7 days

Time resolution:

Once a week

□ Forecast products:

Intensity of MHWs Categaries of MHWs

I_{MHW} $T_{threshold} - T_{clim}$

(Hobday et al., 2016, Prog. Oceanogr.)

Moderate MHWs

Severe MHWs

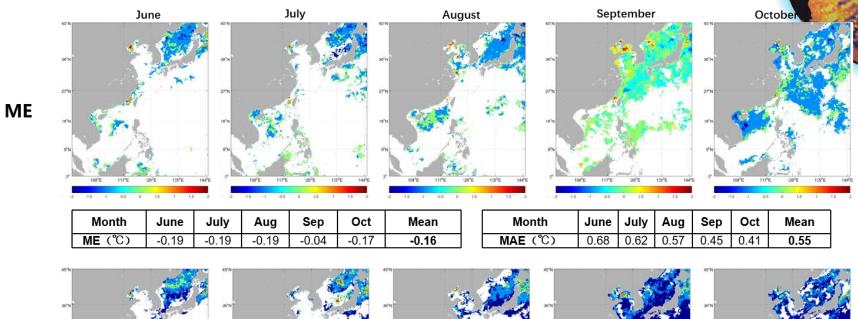
3<N<4

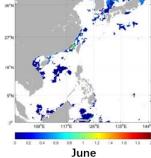
The severe hot SST process has a serious impact on Marine ecological health and Marine fisheries

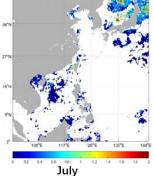
Strong MHWs

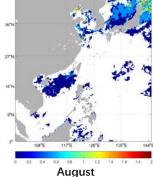
2<N<3

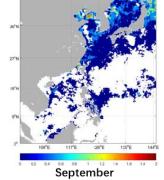
The strongly hot SST process has relatively serious impact on Marine ecological health and Marine fisheries

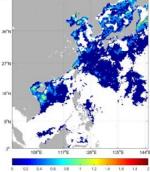

Extreme MHWs

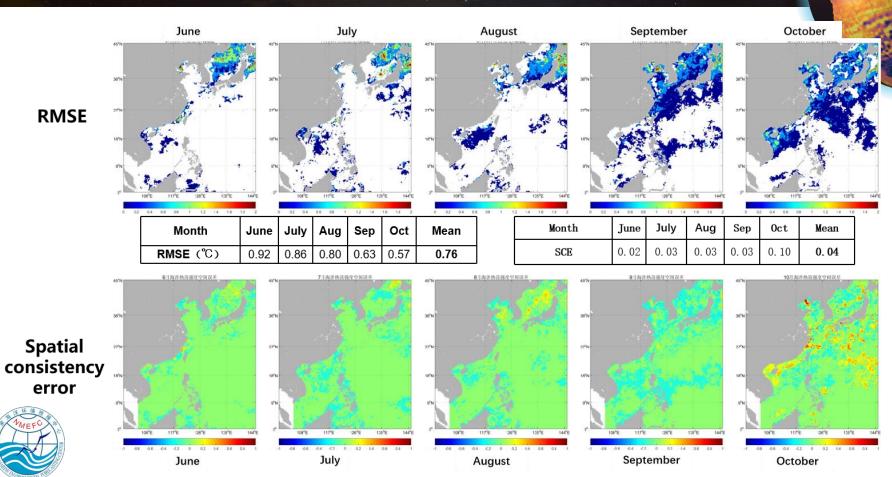







MAE




October

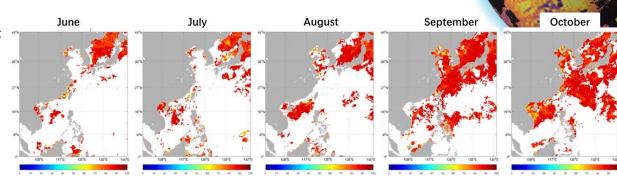
The scoring criteria is adopted to evaluate the forecast effect, and the full score is 100.

The score formula for categories forecast result is as follows:

$$S_{fore} = 100-25|X|$$
,

$$|X| = 0,1,2$$

$$S_{fore} = 0$$
,


Where:

S fore--The score of Marine heat wave forecast

X--The difference between the forecast category and the obseved category

Ai--Forecast values of no MHW, Category I (moderate), II(strong), III(Severe), IV (Extreme) respectively (i=0,1,2,3,4)

Bj-- Observed values of no MHW, Category I (moderate), Π (strong), Π (Severe), IV (Extreme) respectively (j=0,1,2,3,4)

Month	June	July	Aug	Sep	Oct	Mean
Score	87.9	87.6	90.7	91.1	90.3	89.5

On May 12, 2024, the NMEFC held a press conference on China's marine heatwave forecasting products, officially releasing weekly forecasts of MHWs intensity and categories to the public. https://www.nmefc.cn/

Outline

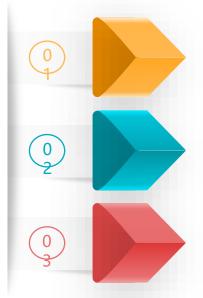
01 Backgrouds

02 SST Fusion Analysis

03 Al Forecast

04 Marine Heat Waves

05 Future plan



☐ High resolution SST, SSS, SLA and SSC analysis data

■ Improve AI forecast with dynamics-drived and data-drived

☐ User-based Operational Forecasting Services

www.nmefc.cn www.oceanguide.org.cn

ADVANCING OCEAN PREDICTION SCIENCE FOR SOCIETAL BENEFITS

Thank you!

National Marine Environmental Forecasting Center

