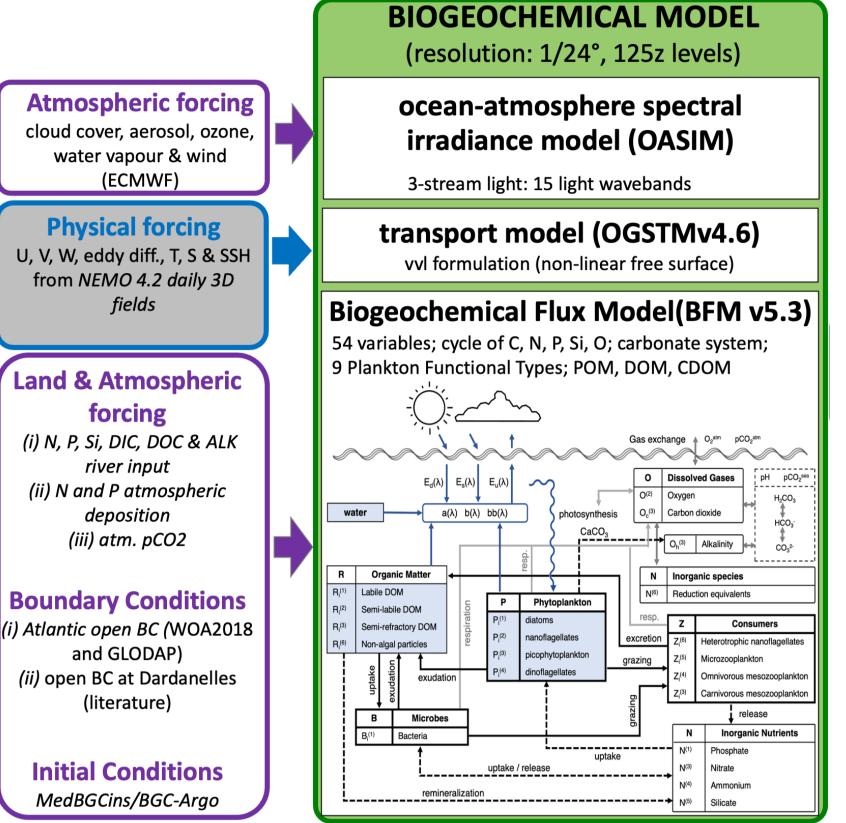


ADVANCING **OCEAN PREDICTION** SCIENCE FOR SOCIETAL BENEFITS

Istituto Nazionale di Oceanografia e di Geofisica **Sperimentale**

Theme #5:

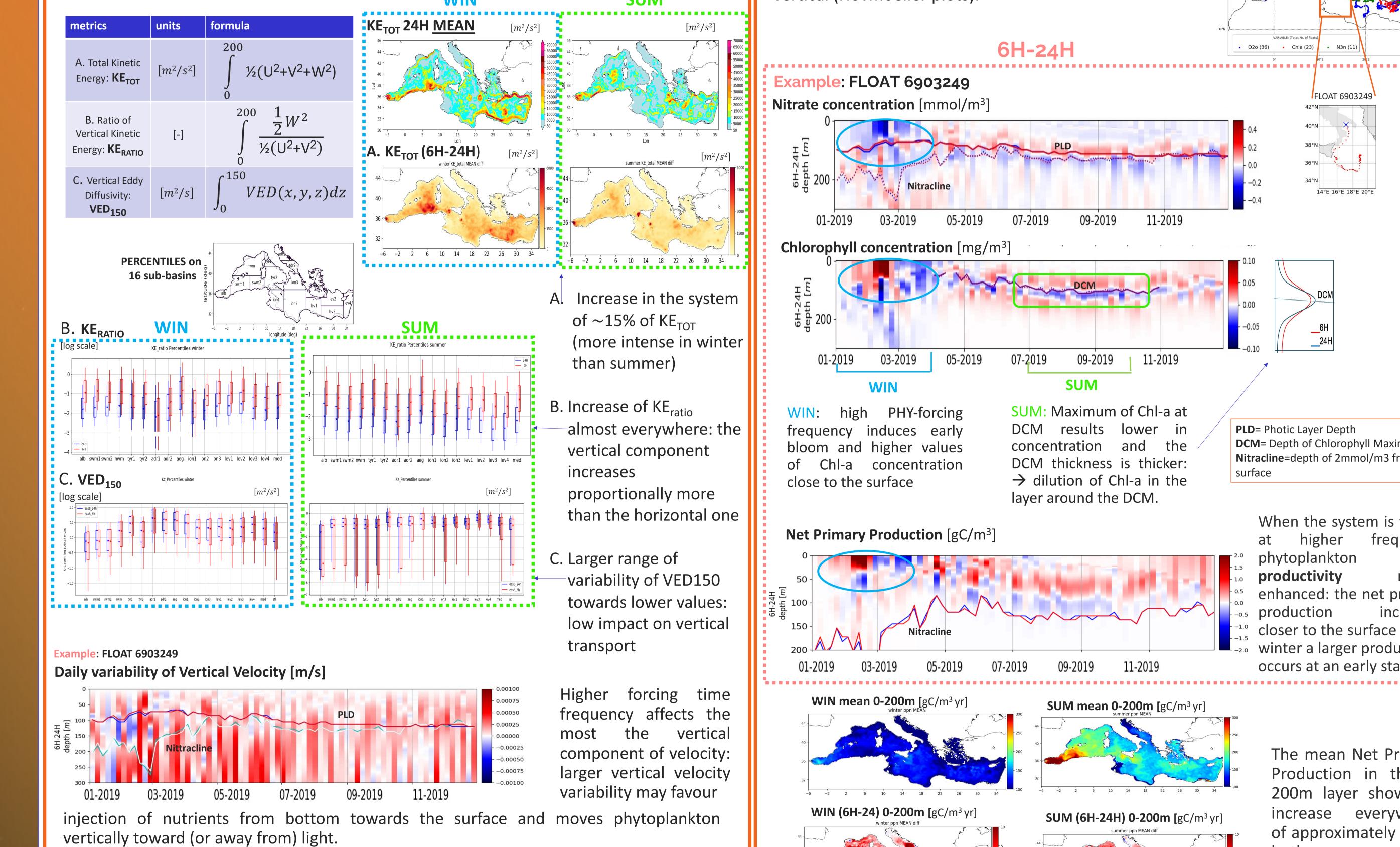

Sensitivity of a 3D-model biogeochemistry to ocean physics forcing frequency

Introduction

The influence of the time frequency of ocean physics (PHY) forcing (currents, temperature, salinity and vertical diffusivity) on an operational transport **biogeochemical (BGC) model** is investigated and discussed measuring the impact on some meaningful biogeochemical indicators and on product quality.

Method

The model system of the Copernicus Marine Service for the Mediterranean Sea consists of NEMO-WWIII physical model (**MED-PHY**) and the OGSTM-BFM transport-biogeochemical model (**MED-BGC**) at 1/24° horizontal resolution. The two components are separately coupled to a data assimilation schemes: ocean 3DVar (Dobricic and Pinardi, 2008) for physics, and 3DVarBio (Teruzzi et al., 2014; 2021) for biogeochemistry.



SET-UP: two experiments off-line coupling for year 2019:

- 24h frequency physical forcings from MED-PHY (Low Freq run, 24H)
- 6h frequency physical forcings from MED-PHY (High Freq run, 6H)
- Results are analyzed in terms of differences **6H-24H**

Physics

We propose some evaluating metrics which combine physical variables to spot possible differences in the energetics, hydrodynamics and circulation patterns that can have impacts on the biogeochemical dynamics; the metrics reduce the fields from 3D to 2D. SUM

Biogeochemistry

The BGC dynamics are greatly dependent by vertical processes. Impact of different PHY frequencies evaluated by comparing evolution of variables along vertical (Hovmoeller plots).

Conclusions

By using 6H (vs 24H) frequency forcings:

- **increase of 15% of KE**tot in the system (more intense in WINTER than SUMMER)
- increase of the vertical component of KE almost everywhere and in all the seasons (the increase of the variability of the vertical velocity plays a role)
- more injection of nutrients from bottom to the photic layer, **Net Primary Production** increases of 2% in both winter and summer
- the quality of the simulated Chl-a, Nitrate and Oxygen improves: comparison with BGC Argo floats demonstrates an improvement of the system in run 6H \rightarrow the basin-scale model uncertainty (RMSD) diminishes of 2% in Chl-a concentration and of 1% in Nitrate concentration in the 0-30m vertical layer; of 6% in Oxygen concentration in the first 100m.

Validation with BGC Argo floats on year 2019

	RMSD 24H						RMSD 6H							The RMSD
VARs	0-10m	10-30m	30- 60m	60-100m	100- 150m	CORR	0-10m	10-30m	30-60m	60-100m	100- 150m	CORR	n. Tot Profiles.	comparison
Chl-a [mg/m³]	0.080	0.080	0.097	0.086	0.067	0.76	0.079	0.078	0.097	0.085	0.066	0.77	1128	shows that the
Nitrate [mmol/m ³]	0.722	0.668	0.620	0.972	1.230	0.93	0.718	0.664	0.624	0.978	1.266	0.93	612	performance of 6H generally
Oxygen [mmol/m³]	5.71	7.64	12.34	11.31	10.81	0.81	5.36	7.26	10.71	11.54	11.01	0.82	1980	increases close
Root N BLUE :		to the surface (0-30m layer).												

both seasons.

Feudale L.¹, Bolzon G.¹, Cossarini G.¹, Teruzzi. A.¹, Clementi E.², Salon S.¹ (¹OGS, ²CMCC)

E-mail: lfeudale@ogs.it

ntergovernmental Oceanographic Commission

2021 United Nations Decade of Ocean Science 2030 for Sustainable Development