2024.11.18 17:15–17:30 OceanPredict Symposium (OP'24)

Deterministic and ensemble forecasts

of Kuroshio south of Japan (Ohishi et al. in prep.)

<u>Shun Ohishi¹</u>, T. Miyoshi¹, and M. Kachi²

1: RIKEN/R-CCS, Japan, 2: JAXA/EORC, Japan

Introduction

1. Introduction – Kuroshio path south of Japan –

■ Three typical paths in Kuroshio (Kawabe 1995)

- <u>Straight</u>
- oNLM (offshore NonLarge Meander)
- Large Meander (LM)

1. Introduction – Impacts of the Kuroshio –

Ocean

- Marine transport & Fishery (Nakata et al. 2000)
- Atmosphere
 - Heavy snow & Hot summer in Kanto district

(Nakamura et al. 2012; Sugimoto et al. 2020)

Hot summer

1. Introduction – LM indicators –

Japan Meteorological Agency (JMA)

Kuroshio's southernmost position (estimated from temperature at sea surface and 100 m depth) ٠

Sea level differences between Kushimoto and Uragami (Kawabe 1980)

- Combination of the two indicators to detect LM
- Only two events since the start of satellite SSH observations

1. Introduction – Kuroshio prediction –

Predictability of the Kuroshio south of Japan

- Komori et al. (2003): 60 days
- Kamachi et al. (2006): 20 days (Meander → Straight)

80 days (Straight \rightarrow Meander)

- Usui et al. (2006):

Almost deterministic forecasts

← Analysis standard deviation (SD)

1. Introduction – Existing ocean reanalysis datasets –

(c.f. Balmaseda et al. 2015; Martin et al. 2015) *3 (4)D-VAR: 3 (4) Dimensional VARiational data assimilation *KF: Kalman Filter *EnKF: Ensemble Kalman Filter

We have developed a high-resolution EnKF-based ocean data assimilation system and created an ensemble analysis dataset called LORA (LETKF-based Ocean Research Analysis; Ohishi et al. 2022a, b, 2023).

JAXA-RIKEN Ocean Analysis

TOP Data Use

User's Guide FAQ

Last Update: 20 Mar. 2023 22:59:23

How to find the website

- 1. Google "JAXA RIKEN Ocean"
- 2. Scan the QR code

1. Introduction

Aim

- Validate the LORA dataset for the Kuroshio south of Japan
- Investigate the predictability of deterministic and ensemble forecasts

Data & Method

2. Dataset – LORA –

Ocean model

Model: sbPOM version 1.0 (Jordi and Wang 2011; Ohishi et al. 2022a, b)

```
Domain: Western North Pacific [108°E–180°, 12°–50°N]
```

```
Resolution: dx = 0.1^{\circ} \times 50 \sigma-layers
```

Atmospheric forcing: JRA55-do (Tsujino et al. 2018)

River discharge: TE-Global (https://www.eorc.jaxa.jp/water/)

Spin-up period: 2011.01-2015.06

Data assimilation

Data assimilation: LETKF (Hunt et al. 2007)

Ensemble size: 128, Assimilation interval: 1 day

Assimilated obs.: Satellite SST, SSS, and SSH, and in-situ T and S

Schemes: RTPP (Zhang et al. 2004), IAU (Bloom et al. 1996), AOEI (Minamide et al. 2018)

Assimilation period: 2015.07–Present

3. Method

Forecast experiment

- Deterministic forecast:Restart from ensemble meanEnsemble forecast:Restart from 128 ensemble
- Period: 6-month forecast for each month in 2016.01–2018.12 \rightarrow Total: 36 cases (2322-year integration)
- Atm. forcing: JRA55-do (Tsujino et al. 2018)
 - \rightarrow Assumption of perfect external forcing as in Usui et al. (2006)

Validation

Forecast RMSDs relative to the LORA (i.e., analyses)

Result (Validation)

4. Result – Validation –

Result (Forecast)

4. Result – Forecast: Kuroshio axis –

■ 1-month Kuroshio axis forecast initialized on 1st day of each month

4. Result – Predictability –

- The Ensemble forecast outperforms the deterministic forecast.
- During the large meander period, the predictability is shorter.

4. Result – Initial: 2017.08 (Straight to Meander) –

4. Result – Predictability –

Ensemble 100-110 days

*o: Significant difference relative to the persistence

*•: Significant difference relative to the deterministic forecast

<

Deterministic 70-80 days

Summary

5. Summary

Validation for the Kuroshio south of Japan

The LORA well represents the formation of the Kuroshio large meandering in the summer of 2017.

- \rightarrow Sufficient accuracy for the Kuroshio forecast.
- Deterministic and ensemble forecasts
 - The ensemble forecast outperforms the deterministic forecast.
 - → Deterministic: 70–80 days < Ensemble: 100–110 days
 - Positive SST and SSH forecast biases exist.
 - \rightarrow It is necessary to develop the ocean DA system.
- Plan

Investigate important factors to generate the Kuroshio large meandering using ensemble sensitivity experiments

Appendix

Ensemble forecast of Kuroshio south of Japan

Shun Ohishi¹, Takemasa Miyoshi¹, and Misako Kachi² 1: RIKEN/R-CCS, 2: JAXA/EORC

Introduction

1. Introduction – Kuroshio path south of Japan –

■ Three typical paths in Kuroshio (Kawabe 1995)

- <u>Straight</u>
- oNLM (offshore NonLarge Meander)
- Large Meander (LM)

1. Introduction – Kuroshio path south of Japan –

Three typical paths in Kuroshio (Kawabe 1995)

- nNLM (<u>n</u>earshore <u>N</u>on<u>L</u>arge <u>M</u>eander)/Straight
- oNLM (offshore <u>N</u>onLarge <u>M</u>eander)
- LM (Large Meander)

1. Introduction – Impacts of the Kuroshio –

Ocean

- Marine transport & Fishery (Nakata et al. 2000)
- Atmosphere
 - Heavy snow & Hot summer in Kanto district

(Nakamura et al. 2012; Sugimoto et al. 2020)

Hot summer

1. Introduction – LM indicators –

Japan Meteorological Agency (JMA)

Kuroshio's southernmost position (estimated from temperature at sea surface and 100 m depth) ٠

Sea level differences between Kushimoto and Uragami (Kawabe 1980)

- Combination of the two indicators to detect LM
- Only two events since the start of satellite SSH observations

1. Introduction – Kuroshio prediction –

Predictability of the Kuroshio south of Japan

- Komori et al. (2003): 60 days
- Kamachi et al. (2006): 20 days (Meander → Straight)

80 days (Straight \rightarrow Meander)

- Usui et al. (2006):

40–60 days

Almost deterministic forecasts

← Analysis standard deviation (SD)

1. Introduction – Existing ocean reanalysis datasets –

(c.f. Balmaseda et al. 2015; Martin et al. 2015) *3 (4)D-VAR: 3 (4) Dimensional VARiational data assimilation *KF: Kalman Filter *EnKF: Ensemble Kalman Filter

We have developed a high-resolution EnKF-based ocean data assimilation system and created an ensemble analysis dataset called LORA (LETKF-based Ocean Research Analysis; Ohishi et al. 2022a, b, 2023).

JAXA-RIKEN Ocean Analysis

User's Guide FAQ 日本語

Last Update: 20 Mar. 2023 22:59:23

How to find the website

- 1. Google "JAXA RIKEN Ocean"
- 2. Scan the QR code

1. Introduction

Aim

- Validate the LORA dataset with respect to the Kuroshio south of Japan
- Investigate predictability of deterministic and ensemble forecasts
- Investigate important factors for the formation of the Kuroshio large meandering during the summer of 2017

Data & Method

2. Dataset – LORA –

Ocean model

Model: sbPOM version 1.0 (Jordi and Wang 2011; Ohishi et al. 2022a)

```
Domain: Western North Pacific [108°E–180°, 12°–50°N]
```

```
Resolution: dx = 0.1^{\circ} \times 50 \sigma-layers
```

Atmospheric forcing: JRA55-do (Tsujino et al. 2018)

River discharge: TE-Global (https://www.eorc.jaxa.jp/water/)

Spin-up period: 2011.01-2015.06

Data assimilation

Data assimilation: LETKF (Hunt et al. 2007)

Ensemble size: 128, Assimilation interval: 1 day

Assimilated obs.: Satellite SST, SSS, and SSH, and in-situ T and S

Schemes: RTPP (Zhang et al. 2004), IAU (Bloom et al. 1996), AOEI (Minamide et al. 2018)

Assimilation period: 2015.07–Present

2. Dataset – AVISO –

AVISO

```
Variable: SSH, SSHA, surface geostrophic velocity
```

```
* SSH (x,y,t) = MDOT(x,y) + SSHA(x,y,t)
```

```
Resolution: dx = 0.25^{\circ}
```

Period: 1993.01–2021.12

3. Method

Forecast experiment

- Deterministic forecast:Restart from ensemble meanEnsemble forecast:Restart from 128 ensemble
- Period: 6-month forecast for each month in 2016.01–2018.12 \rightarrow Total: 36 cases (2322-year integration)
- Atm. forcing: JRA55-do (Tsujino et al. 2018)
 - \rightarrow Assumption of perfect external forcing as in Usui et al. (2006)

Validation

Forecast RMSDs relative to the LORA (i.e., analyses)
Result

4. Result – Validation –

4. Result – Validation: Spatial pattern in 2017 –

SSH spatial pattern

Consistent between the LORA and AVISO

 \rightarrow Sufficient accuracy in LORA

to predict the LM

Mechanism by previous studies

(e.g., Usui et al. 2008)

Eastward propagation of meandering

off the southeastern coast of Kyushu

- + Westward propagation of meandering?
- → Future work: Ensemble sensitivity analysis

4. Result – Forecast: Kuroshio axis –

■ 1-month Kuroshio axis forecast initialized on 1st day of each month

- The Ensemble forecast outperforms the deterministic forecast.
- During the large meander period, the predictability is shorter.

4. Result – Initial: 2016.08 (Straight) –

Larger northward shift in deterministic forecast in 136–140°E

Black contour: (left) analysis (middle and right) forecast

Green contour: (middle and right) analysis

4. Result – Initial: 2016.08 (Straight) –

- Definition of SSH contour
- Extract SSH analyses where the surface current is maximum for each longitude grid within 131°– 140°E
- Define median SSH contour as
 Kuroshio axis
 - \rightarrow Value inside parenthesis

Larger northward shift

in deterministic forecast

in 136–140°E

4. Result – Initial: 2017.08 (Straight to Meander) –

Larger southward meandering in deterministic forecast

Black contour: (left) analysis (middle and right) forecast

Green contour: (middle and right) analysis

4. Result – Initial: 2017.08 (Straight to Meander) –

Larger southward meandering

in deterministic forecast

4. Result – Initial: 2018.03 (Meander) –

Meander extends to the southeast in deterministic forecast

Black contour: (left) analysis (middle and right) forecast Green contour: (middle and right) analysis

4. Result – Initial: 2018.03 (Meander) –

Meander extends

to the southeast

in deterministic forecast

Ensemble 100-110 days

*o: Significant difference relative to the persistence

*•: Significant difference relative to the deterministic forecast

<

Deterministic 70-80 days

How many members are required to outperform the deterministic forecast?

Method

For each ensemble size (2, 4, 8, ..., 64):

- 1. Generate an ensemble mean SSH field averaged over randomly selected ensemble members (i.e., subsampling)
- 2. Calculate the forecast RMSDs
- 3. Repeat steps 1 and 2 1000 times
- 4. Calculate the average and standard deviation of the 1000 RMSDs
- * This is not fully consistent with DA experiments with smaller ensemble sizes because the recentering method is not applied.

Compared with the deterministic forecast,

- When ensemble size < 16,

the forecast RMSD averages are larger for early forecast days. When ensemble size > 16,

the forecast RMSD averages are smaller over throughout the forecast period.

When ensemble size \geq 32,

the forecast RMSD averages are almost certainly better than the deterministic forecast.

4. Result – SSH forecast RMSD –

Deterministic forecast

32°N

30°N

132°E

136°E

140°E

132°E

0.0

136°E

0.4

0.2

RMSD (m)

140°E

0.6

132°E

136°E

140°E

Spatial pattern is almost the same,

but the error growth rate is different.

Contour: Analysis SSH Climatology

4. Result – SSH forecast RMSD –

Ensemble forecast is more accurate than deterministic forecast.

Discussion

5. Discussion – Predictability –

- List of predictability of the Kuroshio south of Japan
 - Komori et al. (2003): 60 days
 - Kamachi et al. (2006): 20–80 days (Short: Meander → Straight path)
 - Usui et al. (2006): 40–60 days <u>for 1993–2004</u>
 - This study: 70–80 days in the deterministic forecast

100–110 days in ensemble forecast for 2016–18

 \rightarrow Since these experiment periods are different, we cannot directly compare them. Usui et al. (2006) This study

4. Result – SSH forecast bias –

Deterministic forecast

Forecast bias appears to contribute

to degrade the forecast accuracy.

4. Result – SSH forecast bias –

Bias (m)

Sigma coordinate model would result in Kuroshio overshoot.

 \rightarrow MRI.COM with sigma-z

coordinate would be better.

• Example: 4 ensemble members with $x^f = (4\ 2\ 1\ 8)^T$ and x^t or $\overline{x^a} = 2.5$

- 1. Sort $x^f \rightarrow x^f_{sort} = (1\ 2\ 4\ 8)^T$
- 2. Set categories as follows:

$$\overline{x^a} = 2.5$$

$$\checkmark$$

x ^f		1		2		4		8	
Category	0		1		2		3		4

- 3. Count a category of $\overline{x^a}$
- 4. Repeat the process 1–3 at each grid for an analysis region at a forecast time
- 5. Make histogram

■ SSH over south of Japan

■ SST over south of Japan

Summary

6. Summary

Validation for the Kuroshio south of Japan

The LORA well represents the formation of the Kuroshio large meandering in the summer of 2017.

- \rightarrow Sufficient accuracy for the Kuroshio forecast.
- Deterministic and ensemble forecasts
 - The ensemble forecast outperforms the deterministic forecast.
 - → Deterministic: 70–80 days < Ensemble: 100–110 days
 - Positive SST and SSH forecast biases exist.
 - \rightarrow It is necessary to develop the ocean DA system.
- Plan

Investigate important factors to generate the Kuroshio large meandering using ensemble sensitivity experiments

Appendix

1. Introduction

– Data Assimilation –

Data Assimilation

Optimal combination of ocean simulation and obs. with statistical methods and dynamical systems theory

4. Result – Validation –

- The formation of Kuroshio LM in summer 2017 is well captured by the LORA
- In 2020 with unstable Kuroshio, the accuracy is low.

*(a): Max. geostrophic current within 28°–35°N *(b): Analysis domain: 131°–140°E, 30°–35°N

4. Result – Validation: Spatial pattern in 2020 –

0.4

SSH (m)

AVISO (b) AVISO:2020-05-01

(d) AVISO:2020-07-01

(f) AVISO:2020-09-01

- Low accuracy
- Different large meandering shape
- Low reproducibility of

pinching off a cyclonic eddy in LORA

JCOPE T-DA ($dx = 1/36^\circ$) @ 2020.11.01

4. Result – Forecast SSH RMSD –

Deterministic: 100-110 days < Ensemble: 130-140 days

Deterministic: 120 days

Deterministic: 90 days

Ensemble: 150 days

- Ensemble: 150 days
- Rapid RMSD increase during the large meander period
- Predictability of the deterministic forecast more depends on
- the Kuroshio path state.

4. Result – Forecast SSH bias –

4. Result – Initial: 2016.08 (Straight) –

- Definition of SSH contour
- Extract analysis SSH where the surface current is maximum for each longitude grid within 131–140°E
- Take average over 2016-2018
- SSH contour: 0.56 m

Larger northward shift

in deterministic forecast

*SSH contour: 0.56 m ~ Max. speed in 131–140°E

in 136–140°E

4. Result – Initial: 2017.08 (Straight to Meander) –

Larger southward meandering

in deterministic forecast

*SSH contour: 0.56 m ~ Max. speed in 131–140°E

4. Result – Initial: 2017.08 (Straight to Meander) –

4. Result – Initial: 2018.03 (Meander) –

4. Result – Ambe et al. (2003) –

- Make a subsidiary line (140 km width) crossing the Kuroshio almost perpendicularly at the start longitude
- 2. Extract a point where the surface current is maximum
- 3. Make a new subsidiary line downstream ...

\rightarrow Next