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Chesapeake Bay Environmental Forecast System (CBE[m]=f{ [u]
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CBEFS

Chesapeake Bay Environmental Forecast System

Use our forecasts and "nowcasts" of temperature, salinity, dissolved oxygen, and other physical and chemical factors within
the Chesapeake Bay to help monitor Bay health and plan your on-the-water activities. Based on observations and
computer models developed by the Virginia Institute of Marine Science and partners, these tools accurately predict the

current status of important environmental variables and how they are likely to change in the short-term.
Our Chesapeake Bay Environmental Forecast System simulates 3 conditions for each selected variable:

1. Nowcast: present-day status of selected variable in Chesapeake Bay
2. 2-Day Forecast: status of selected variable in the Bay 2 days from now, and

3. Forecast Trend: difference between nowcast and forecast (% change over 2 days)

Click a selection below to access the specified simulation. Please see the contact information page for data requests and

general contact information.
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http://www.vims.edu/hypoxia

Chesapeake Bay Environmental Forecast System (CBEFS)

A 3D hydrodynamic, biogeochemical ROMBSCB

A Implementation of the Regional Ocean Modeling
System (ROMS)

A 600 m x 600 m

A 20 vertical levels

Land N
Inputs

StLaurent et al., BG, 2020




Extend CBEFS with forecasts of harmful algal blooms
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Extend CBEFS with forecasts of harmful algal blooms

Existing model forecasts using a mechanistic mod€hesapeake

Bay Environmental Forecasting System (CBEFS)
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Research question

A We apply the statistical forecasting model using mechanistic
model output (i.e., CBEFS forecasts)

A Should we also train the statistical model using mechanistic
model output or can we train it using situobservations?



We compare three methods to train the statistical forecasting mode

Comparing
prediction skKill
J T T T T T T s | === ====- I

In Situ '—'» Model skill 0 E

Statistical training  Application to target area

observations C\ Nt .1 I
tatistical e
Predictions:
model — IO

L IN situ
observations

Method O-O

[ 9




We compare three methods to train the statistical forecasting mode
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We compare three methods to train the statistical forecasting mode
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Methodology ¢ environmental training information
IN situ observations

A Data provided by the Chesapeake Bay Program
A Use data from 1982020 (> 7,000 data points per taxon)
A At 42 stations covering both the main channel and tributaries
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