

Theme #4

ADVANCING OCEAN PREDICTION SCIENCE FOR SOCIETAL BENEFITS

1/12° Global Ocean Modeling System by the Korea Institute of Ocean Science and Technology

Hyunkeun Jin¹ (hkjin@kiost.ac.kr), Gyundo Pak¹, Young Ho Kim², Inseong Chang², Young-Gyu Park^{1*}

¹Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea ²Pukyong National University, Busan, 48513, Republic of Korea

Introduction

- Growing importance of high-resolution global ocean data as extreme events affecting Korea become more frequent (e.g., marine heatwaves, tropical typhoons)
- Marine environmental pollution emerging as a major concern in Korea (e.g., microplastics, radioactive substances)
- Crucial role of high-resolution global ocean models in effective particle-tracking simulations
- Development of the global ocean model (GFDL-MOM6) through collaboration between the Korea Institute of Ocean Science and Technology (KIOST) and

Pukyong National University

Data & Method

- Base model: GFDL-MOM6
- Horizontal resolution: 1/12 °×1/12 ° (82°S–90°N, 180 °W–180 °E)
- Vertical resolution: 61 layers applying hybrid coordinate system (Z-star & isopycnal grid)
- Vertical mixing scheme: ePBL (Reichl and Hallberg, 2018)

Table 1. Input data for the global MOM6 model by KIOST

		Observation data for data assimilation		
3D-initial fields (Temp, Salt)	Atmospheric forcing	9 Sea Surface Temperature (SST	In-situ TS profiles	Sea Surface Heights (SSH)
EN4.2.2	ECMWF-ERA5	NOAA OISSTv2	GTSPP best-copy, Argo, WOD	CMEMS Global Ocean Along-track L3

Results

- Comparison in sensitivity tests_with different observational data applied in data assimilation
- Model period: March 1–31, 2011
- Validation datasets: EN4.2.2 c14

To assimilate ocean datasets, Ensemble Optimal Interpolation is applied using the following formula (Evensen et al., 2003; Kim et al., 2015).

$$\begin{aligned} & \overset{\text{fields}}{X^{a}} = X^{b} + \overset{\text{gain matrix}}{K(Y - HX^{b})} \\ & \overset{\text{Observations}}{\overset{\text{Forecast}}{\underset{\text{fields}}{}}} \end{aligned} \tag{1}$$

- Number of Ensemble members: 50
- Assimilation Intervals: 7 days for TS profiles, daily for SST and SSH
 - coordinate: Strategy of c - - - - - 4 _ _ _ _ _ _ _/_^{_}_ _

Figure 1. Schematic diagram of vertical coordinate conversion using the ALE algorithm for an ocean data assimilation system

Table 2. Sensitivity test based on differences in data assimilation

Experiments	CTR (NO_DA)	EXP1 (DA_TS)	EXP2 (DA_TSH)
Assimilated	_	SST, in-situ	SST, in-situ
variables		profiles	profiles, SSH

150W 90W 30W 150E

Figure 2. Surface temperature biases for each case obtained from EN4.2.2

0 1 2 3

Figure 6. Vertical zonal-mean salinity (dashed line) and its bias (color) for each case obtained

obtained from EN4.2.2

(dashed line) and its bias (color) for each case

from EN4.2.2

Summary and Future plans

-3 -2 -1

- Reduction of the dominant positive bias in CTR (NO_DA) across most global regions through data assimilation, with an associated increase in pronounced cold bias (below -2°C) in equatorial regions such as the eastern Pacific, and Atlantic Ocean (Figure 2).
- In Pacific Ocean, most effective mitigation of positive temperature and salinity biases in subsurface layers around the Kuroshio-Oyashio Mixed Water Region (140°E, 40°N), along with moderation of cold temperature bias in the equatorial region (Figures 3; Figure 4).
- In Atlantic Ocean, substantial reduction of positive temperature and salinity biases near the Gulf Stream (40°N) in EXP2 (DA_TSH), with noticeable positive biases in the CTR (NO_DA) case (Figure 4; Figure 6).
- Mitigation of warm temperature bias near 30°N (Figure 3d–e) and positive salinity bias in the Caribbean Sea (Figure 5d–e) by conducting additional data assimilation for sea surface height.
- Over 10 years of global reanalysis data (2011–2020) to be generated after model improvements (e.g., Memory usage optimization in data assimilation, improving perturbation fields)

