

Supermodelling towards improved climate prediction

Tarkeshwar Singh¹, François Counillon^{1,2}, Noel Keenlyside^{1,2}, Ping-Gin Chiu², Francine Schevenhoven²

1. Nansen Environmental and Remote Sensing Centre and Bjerknes Centre for Climate Research, Bergen, Norway

2. Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway

Bias is often larger than the signal we analyze or predict

Standard modelling

Standard modelling

Non-interactive models (NI)

A standard approach to handle such bias is to take the multi-model ensemble mean (MME) as a **post-processing** step but

- It does not correct non-linear responses (e.g., climate sensitivity)
- Challenging to assess internal variability
- It cannot remove common biases such as the double ITCZ

Supermodelling

Supermodel: An interactive ensemble of models, models are *dynamically combined*.

Frequent interaction between the models.

- ✓ Errors can be corrected at an early stage before they develop into large-scale climate model biases.
- ✓ Supermodel is a new dynamical system.

Key ingredients of supermodelling

- The models synchronisation is important to *maintain internal variability*.
- Optimal strength of connections between models based on *training* on the basis of historical observations.
- Models in the *ensemble* need to be different enough to compensate for each other's shortcomings.

UNESCO Variations Decar Coenographic Commission 2021 United Nations Decar 2030 for Sustanable Device

An example of a Lorenz 63 supermodel

$$\dot{x} = \sigma(y - x)$$
$$\dot{y} = x(\rho - z) - y$$
$$\dot{z} = xy - \beta z$$

	σ	ρ	β
Truth	10	28	8/3
Model 1	13.25	19	3.5
Model 2	7	18	3.7
Model 3	6.5	38	1.7

A supermodel add connections to the other imperfect models Example:

$$\dot{x}_1 = \sigma_1(y_1 - x_1) + C_{12}^x(x_2 - x_1) + C_{13}^x(x_3 - x_1)$$

Van den Berge et al. 2011

In training phase: use observations to estimate the nudging coefficients (and constrain the state during)

In verification phase: coefficients are frozen and the system can be used as a new dynamical system

2021 United Nations Decade

Supermodel verification

- All models have corrected the bias
- Internal variability is in line with the truth

Van den Berge et al. 2011

Supermodelling with state-of-art climate Models

Supermodels are demonstrated with idealised models, but their application to climate models is challenging because they **do not share the same state space, grid and resolution**

Can data assimilation provide a framework to handle this challenge?

Research Article 🔂 Open Access 🛛 💿 🚯

Framework for an Ocean-Connected Supermodel of the Earth System

François Counillon 🔀, Noel Keenlyside, Shuo Wang, Marion Devilliers, Alok Gupta, Shunya Koseki, Mao-Lin Shen

First published: 09 March 2023 | https://doi.org/10.1029/2022MS003310 | Citations: 3

2.

3.

An ocean connected super-ESM with DA

(Counillon, et al. 2023)

- Propagate models for 1 month
- Generate pseudo-observations (from models SST; *i.e.*, weighted mean, weight is trained based on observations)
- Assimilate the pseudo-observations back into each model (correct the full ocean state)

Internal variability in the Nino 3.4 seems well synchronised in the supermodel.

An ocean connected super-ESM with DA

Rainfall climatology in the tropical Pacific (2006-2021)

Supermodel mitigates the double ITCZ problem !

Schevenhoven et al. 2023

First seasonal prediction results with a supermodel

Prediction of Niño3.4, Anomaly Correlation Skill, 1991-2020

- Initial conditions produced by assimilating NOAA SST observations.
- Seasonal predictions, single member, 4 per year, 1991-2020

Supermodel demonstrates some skill in crossing the spring predictability barrier.

(Singh et al., in prep)

Summary

- A successful ocean-connected supermodel framework for Earth system models combining MPIESM-NorESM-CESM
- Supermodel reduces long-standing climate biases (SST and precipitation), and preliminary results demonstrate some skill in crossing the spring predictability barrier.
- Now, there is also an atmospheric-connected supermodel using the CESM ensemble.

Work underway

- More investigation on the seasonal prediction skills Adding EC Forth3 to the supermodel **IMPETUS 4 CHANGE**
- Adding EC-Earth3 to the supermodel

Future Steps

- Use supermodel for downscaling (synchronisation between outer and inner model)
- A supermodel with both atmosphere and ocean connected?

Implementation and validation of a supermodelling framework into **CESM version 2.1.5**

William E. Chapman^{||}, Francine Schevenhoven², Judith Berner¹, Noel Keenlyside², Ingo Bethke², Ping-Gin Chiu², Alok Gupta³, and Jesse Nusbaumer¹

National Center for Atmospheric Research, Boulder, Co. USA ²Geophysical Institute and Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway ³NORCE Norwegian Research Centre, and Bjerknes Centre for Climate Research, Bergen, Norway Correspondence: William E. Chapman (wchapman@ucar.edu)

2021 United Nations Decade 2030 of Ocean Science for Sustainable Develop

ADVANCING OCEAN PREDICTION SCIENCE FOR SOCIETAL BENEFITS

Thank you!

EU

@ceanobs

INTERNATIONAL OCEAN GOVERNANCE

