

2021 United Nations Decade of Ocean Science 2030 for Sustainable Developr

Assessments of quality of predictions for sea ice

Arne Melsom

Norwegian Meteorological Institute / Arctic Monitoring and Forecasting Centre, Copernicus Marine Service

Key questions

- How is the quality of sea ice prediction from model forecasts typically assessed?
- Do we properly address user needs regarding the level of quality of our products?
- Which aspects receive too little attention?

Estimated accuracy in Copernicus Marine Service

Period: 2022-07 – 2023-06								
		Supporting	Best estimate					
Variable	Region	observations	RMSD	Bias (model-observation)				
	Full domain		0.13	0.04				
Sea ice concentration	American s.		0.12	0.04				
(area fraction)	European s.	-	0.13	0.04				
(urou nuotion)	Asian s.	-	0.13	0.04				
	Full domain]		0.11				
Sea ice edge	American s.	COMIC		-0.01				
length (Kkm)	European s.	SSMIS		0.13				
	Asian s.	-		-0.01				
	Full domain		78	1				
Sea ice edge	American s.		88	-3				
position (km)	European s.	-	56	2				
	Asian s.	-	65	10				
0		SMOS	0.33	0.11				
Sea ice thickness ^(*) (m)	Full domain	Cryosat- SIRAL	0.78	-0.31				
	Full domain		5.4	-0.2				
Sea ice drift	American s.	SAR	4.2	0.7				
displacement (km)	European s.		6.7	-1.1				
	Asian s.		5.7	-1.3				

Quality information at a glance

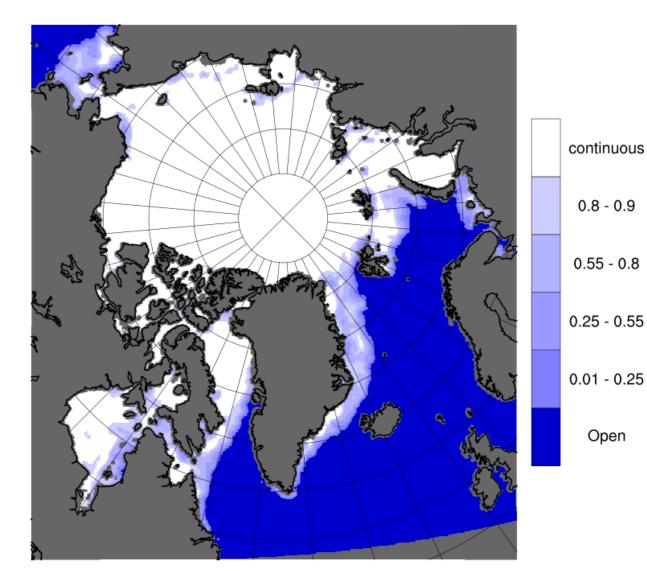
- A very limited set of quality metrics
- Poor information of regional contrasts
- No information about temporal changes in quality (e.g. seasonal)
- Only one type of instrument used for each property (exception: sea ice thickness)
- No information about dependency on forecast day range

Estimated accuracy in Copernicus Marine Service

Period: 2022-07 – 2023-06									
		Supporting	Best estimate						
Variable	Region	observations	RMSD	Bias (model-observation)					
	Full domain		0.13	0.04					
Sea ice	American s.		0.12	0.04					
concentration (area fraction)	European s.	-	0.13	0.04					
	Asian s.		0.13	0.04					
	Full domain			0.11					
Sea ice edge	American s.	COMIC		-0.01					
length (Kkm)	European s.	SSMIS		0.13					
	Asian s.			-0.01					
	Full domain		78	1					
Sea ice edge	American s.		88	-3					
position (km)	European s.	-	56	2					
	Asian s.		65	10					
		SMOS	0.33	0.11					
Sea ice thickness ^(*) (m)	Full domain	Cryosat- SIRAL	0.78	-0.31					
	Full domain		5.4	-0.2					
Sea ice drift	American s.	SAR	4.2	0.7					
displacement (km)	European s.		6.7	-1.1					
()	Asian s.		5.7	-1.3					

Quality information at a glance

- A very limited set of quality metrics
- Poor information of regional contrasts
- No information about temporal changes in quality (e.g. seasonal)
- Only one type of instrument used for each property (exception: sea ice thickness)
- No information about dependency on forecast day range
- Definitions not provided, not obvious, and essential for some results



Sea ice concentration – restrictions on the domain

Open

Sensitivity to domain definition

- Use the full domain to get excellent results **but**!
- Large areas are irrelevant, such as the open ocean far away from the ice edge
- Bias, root mean square difference values will be misleading to operators in ice infested waters

Copernicus

Aarine Service

lorwegian

Institute

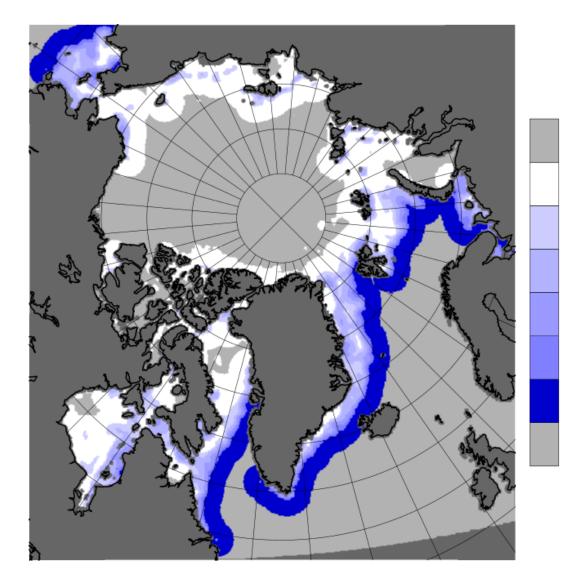
Meteorological

Sea ice concentration – restrictions on the domain

continuous

200km band

0.8 - 0.9


0.55 - 0.8

0.25 - 0.55

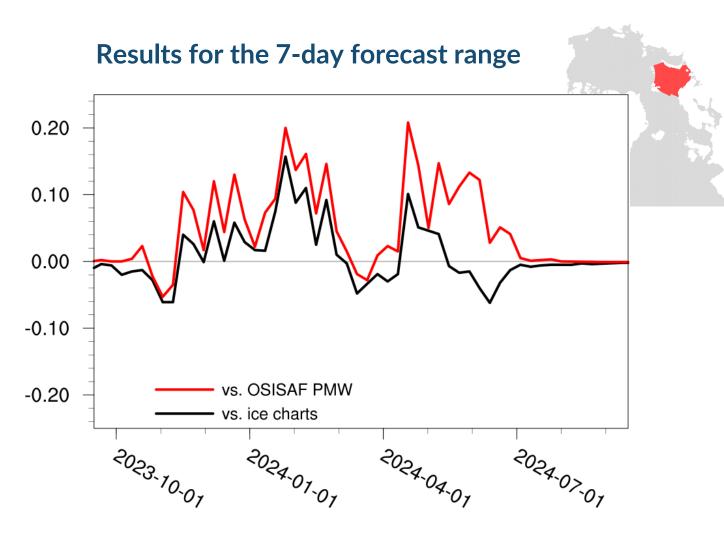
0.01 - 0.25

200km band

Open

Sensitivity to domain definition

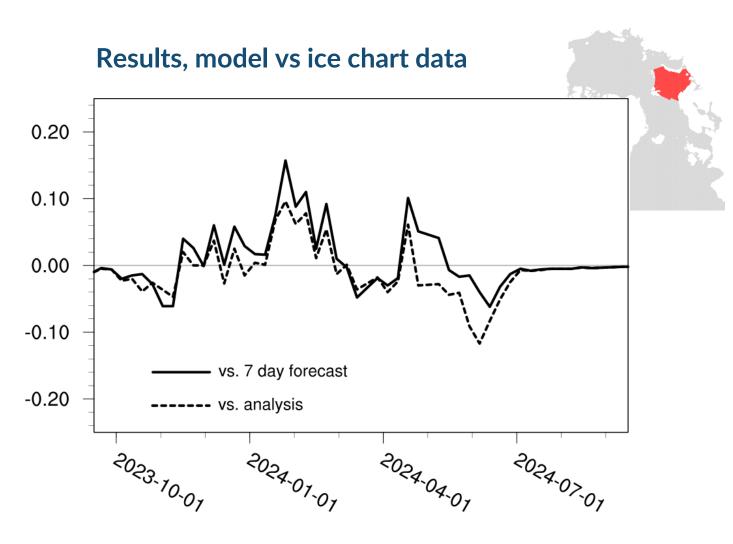
- Use the full domain to get excellent results **but!**
- Large areas are irrelevant, such as the open ocean far away from the ice edge
- Bias, root mean square difference values will be misleading to operators in ice infested waters
- ARC MFC approach: Restrict validation domain to
 - Area with observed concentration in the range [0.01, 0.9]
 - Plus «padded» 200km zones



Sea ice concentration bias, Barents Sea

Quality aspects addressed

- Temporal changes in quality
- Regional results for quality
- Two independent observational datasets



Sea ice concentration bias, Barents Sea

Quality aspects addressed

- Temporal changes in quality
- Regional results for quality
- Quality changes for forecast range

Sea ice concentration, category contingency table

- Model vs SSMIS data, full domain
- Model results are with a 7 day forecast range
- Tabulated values are accumulated from weekly results during 2023-09-07 2024-09-12
- Off-band («remote») match-ups removed

		remote	<0.01	0.01-0.1	0.1-0.4	0.4-0.7	0.7-0.9	>0.9	remote	• Bold:	> 4%
	<0.01		.413	.006	.005	.000	0	0	0	 Bold italics: Diagonal: Tri-diagonal: 	>10%
	0.01-0.1	.002	.059	.007	.014	.002	.000	0	0		60% 87%
Model	0.1-0.4	.001	.032	.008	.026	.013	.001	.000	0		
	0.4-0.7	0	.013	.004	.021	.023	.008	.001	0		
	0.7-0.9	0	.008	.001	.023	.044	.048	.032	0		
	>0.9	0	.004	.001	.009	.023	.064	.085			8

Observations

lorwegian

eteorological

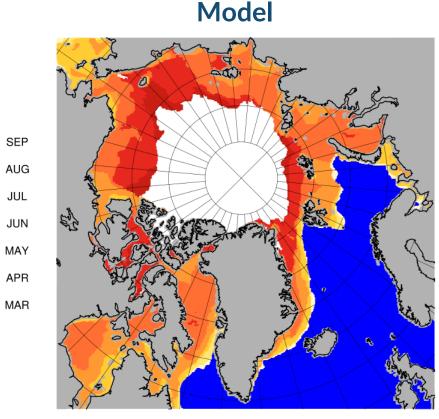
Sea ice concentration, category contingency table

- Model vs SSMIS data, full domain
- Model results are with a 7 day forecast range
- Tabulated values are accumulated from weekly results during 2023-09-07 2024-09-12
- All open ocean and «continous ice cover» match-ups removed Observations

		remote	<0.01	0.01-0.1	0.1-0.4	0.4-0.7	0.7-0.9	>0.9	remote	• Bold:	> 4%
Model	<0.01			.011	.010	.001	0	0	0	• Bold italics:	>10%
	0.01-0.1	.003	.118	.015	.028	.004	.000	0	0	Diagonal:Tri-diagonal:	21% 74%
	0.1-0.4	.001	.064	.017	.052	.026	.002	.000	0		
	0.4-0.7	.000	.026	.009	.042	.045	.015	.001	0		
	0.7-0.9	0	.016	.007	.041	.087	.095	.063	0		
	>0.9	0	.007	.003	.017	.046	.128				

. Iopernicus

Aarine Service



Spatio-temporal variability in forecasts: Ice edge retreat

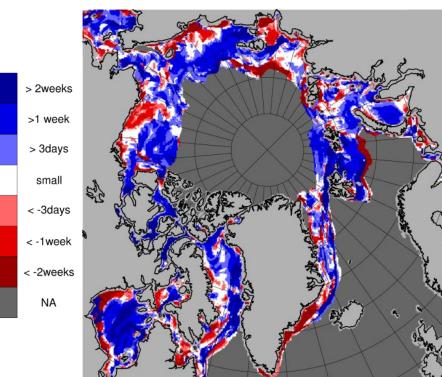
Est

Observations

Date of retreating ice edge

- 10-day forecast vs SSMIS data
- Displayed season: 2024-03-20 - 2024-09-10
- Low (monthly) resolution in presentation
 ⇒ not user-friendly

Norwegian Meteorological Institute



Spatio-temporal variability in forecasts: Ice edge retreat

10 day forecast

Date separation of retreating ice edge

- 10-day forecast vs SSMIS data
- Displayed season: 2024-03-20 2024-09-10
- Positive differences
 ⇒ faster retreat in
 observations
- Generally, model retreat is slower away from coast, faster near the coast

Copernicus

Marine Service

Norwegian Meteorological Institute

Spatio-temporal variability in forecasts: Ice edge retreat

Model analysis

Date separation of retreating ice edge

- 10-day forecast vs SSMIS data
- Displayed season: 2024-03-20 2024-09-10
- Positive differences
 ⇒ faster retreat in
 observations
- Generally, model retreat is slower away from coast, faster near the coast
- Analysis much closer to observations

Recommendations

- For assessment of quality of sea ice concentration results, impose a restriction on the analysis domain.
- Go beyond single value quantities. In most contexts they are not very relevant.
- The quality of results for sea ice can vary between seasons. Span at least one full annual cycle in all evaluations.
- Include contingency tables. They are useful condensates for validation.
- Add results for spatio-temporal variability.
 User needs may be best served by this type of approach.

2021 United Nations Decade 2030 of Ocean Science for Sustainable Develop

ADVANCING OCEAN PREDICTION SCIENCE FOR SOCIETAL BENEFITS

Thank you!

EU

@ceanobs

INTERNATIONAL OCEAN GOVERNANCE

