

ADVANCING **OCEAN PREDICTION** SCIENCE FOR SOCIETAL BENEFITS

Sub-mesoscale modelling of the Labrador Sea

Paul G. Myers¹, Clark Pennelly¹, Ruijian Gou^{1,3}, Pouneh Hoshyar¹, Elena Gebauer^{1,2}

UNIVERSITY OF ALBERTA

SEEEE

2 - Geomar, Kiel, Germany 3 - Key Laboratory of Physical Oceanography and Frontiers Science Center for Deep Ocean CRSNG Multispheres and Earth System, Ocean University of China

1 - Department of Earth and Atmospheric Sciences, University of Alberta, Canada

Digital Research Alliance de recherche numérique du Canada Alliance of Canada

pmyers@ualberta.ca

Motivation

- The Labrador Sea contains a region of deep convection
- The result of deep convection is a newly ventilated water mass: Labrador Sea Water
- Labrador Sea Water is one component of the Meridional Overturning Circulation
- Small-scale features, including eddies, play an important role controlling deep convection
- Mesoscale simulations may poorly resolve these features, misrepresenting convection
- Boundary currents may also be misrepresented at lower resolution
- Boundary currents also transfer warm water towards Greenland's tidewater glaciers and low salinity melt and Arctic waters towards the sub-polar North Atlantic

• Thus the volume, variability, and export pathway of Labrador Sea Water may affect on submesoscale features

Model Set-Up and Experiments

Double nested, regional ANHA4 configuration 1/60 degree in the Labrador Sea, roughly 1 km 75 Vertical levels, no-slip lateral boundary condition. NEMO 3.6

	Configuration			
	ANHA ^a		ANHA4-SPG12-LAB60	
Experiment	ANHA4	ANHA12	LAB60-GLM	LAB60-NoGLM
NEMO ocean model version	3.4	3.4	3.6	
Horizontal Resolution	1/4 °	1/12 °	1/4 ° horizontal resolution with 1/12 ° nest covering Subpolar North Atlantic and 1/60 ° inner nest covering LS	
Vertical levels	50	50	75	
Atmospheric Forcing	CGRF ^b	CGRF	CGRF (to 2007	7), DFS ^c (to 2017),

Eddy Kinetic Energy

LAB60 salinity anomaly, across the AZMP Sections, for the averaged salinity inside the 33.3 isohaline referred to the time-mean salinity for 2007-2018; lower row: same but for the potential temperature. White areas indicate water with a salinity higher than 33.3

REFERENCES: Pennelly, C*; Myers, PG. (2020). Geoscientific Model Development.; Gou, R*; Feucher, C*; Pennelly, C*; Myers, PG. (2021). JGR; Pennelly, C*; Myers, P. (2022). Progress in Oceanography.; Gou, R*; Pennelly, C; Myers, PG. (2022). JGR; Gou, R*; Li, P*; Weigand, KN*; Pennelly, C; Kieke, D; Myers, PG. (2023). JPO; Li, P*; Chen, R; Gou, R*; Pennelly, C; Luo, Y; Myers, PG. (2023). GRL; Hoshyar, P*; Pennelly, C; Myers, PG. (2024). Ocean Modelling; Hoshyar, P. et al., JGR, submitted.; Gebauer et al., PIO, in preparation

Intergovernmental Oceanographic Commission

2021 United Nations Decade of Ocean Science for Sustainable Development