

Eulerian and Lagrangian sampling of water

Santha Akella¹, Avichal Mehra², Zulema Garrafo^{1,3}, Dan Iredell^{1,3} Acknowledgment to the NOAA/EMC HAFS Team, Copernicus Marine Service

Do you want to know:

ž

औ

 \approx

四

 $\mathbf{\Lambda}$

512

- 1. How does the ocean surface change before/after a hurricane passes? (Exemplified using a recent hurricane.)
- 2. How different satellite derived data products (e.g., SSH, SST, SSS, surface currents, etc) compare to ("high-res") ocean reanalysis?
- 3. What happens to the water column (temperature and salinity) under the hurricane track?

Recall/Remember:

 Ocean is sparsely observed; it gets worse in severe weather (e.g., high wind speed, waves/swell, intense rain rate, etc), hence relying on reanalysis data.

2024 Atlantic Hurricane season

- 4 Major (Cat 3+) hurricanes.
 - \$190B damage.
 - 388 fatalities.

ž

. ज़ौ

K) North Atlantic basin category >= 4 100°W 70°W 60°W 50°W 30°W 10°W 20°W Non-Tropical 60°N 60°N Sub/Tropical Depression Sub/Tropical Storm Category 1 明 50°N 50°N Category 2 Category 3 BERYL 20 Category 4 40°N 40°N Category 5 HELENE 2024 TON 2024 30°N 30°N \square °. . 20°N 20°N KIRK 2024 BERYL 2024 10°N 10°N 51.5 Plot generated using troPYcal 100°W 90°W 80°W 70°W 60°W 50°W 40°W 30°W 20°W 10°W

Real-Time Ocean Forecasting System (RTOFS)

- Hourly SSH (shaded).
- Barotropic surface speed (contour).

NATIONAL WEATHER SERVICE

Example: Hurricane Milton (2024)

• Formed: Oct 05, 2024.

ž

ज़ौ

ĸ

- **Dissipated**: Oct 12, 2024.
- Fatalities: 35; 6 missing.
- **Damage**: \$85 billion (est).
- Second most intense Atlantic hurricane in GoM.

Source: https://en.wikipedia.org/wiki/Hurricane_Milton

[Q] What happened to the loop current after the hurricane passed around October 10, 2024?

NATIONAL WEATHER SERVICE

	Data		
	Field	Satellite Data Product	Ocean reanalysis (Mercator GLO12)
<i>ع</i> اً.ً <i>ا</i>	Sea Surface Height (SSH)	<u>cmems_obs-sl_glo_phy-ssh_nrt_allsat-l4-</u> <u>duacs-0.25deg_P1D</u>	<u>cmems mod glo phy anfc</u>
×\$		(ADT; SSALTO/DUACS AVISO)	<u>_0.083deg_P11H-m</u>
DøD	Surface Temperature (SST)	METOFFICE-GLO-SST-L4-NRT-OBS-SST-V2 (OSTIA SST)	As above
*	Surface Salinity (SSS)	cmems obs-mob glo phy-sss nrt multi P1D (CNR SSS)	As above
♪	Surface Currents	<u>cmems_obs_mob_glo_phy-</u> <u>cur_nrt_0.25deg_PT1H-i</u> (GLOBCURRENT)	As above
<u>51</u> 3	Storm track data from: <u>Hurdat2.</u> Thanks to <u>tropycal</u> python A		

VATIONAL WEATHER SERVICE

SSH comparison (5 days before/after + during storm)

AVISO ADT

Virtually identical looking fields (satellite/reanalysis), considering MDT.
Did the hurricane intensity drop (cat 5 to 4) coincide with loop current crossing?

VATIONAL WEATHER SERVICE

ž

 $\mathbf{\Lambda}$

512

SST comparison (5 days before/after + during storm)

OSTIA SST

- Decrease in SST after passage.
- GLO12 SST > OSTIA SST; though note GLO12 SST is hourly and at about 0.5 m depth.

NATIONAL WEATHER SERVICE

ž

212

SSS comparison (5 days before/after + during storm)

CNS SSS

• Saltier after passage.

ž

515

• Substantial differences between datasets. Is this hurricane path?

NATIONAL WEATHER SERVICE

Surface speed comparison (5 days before/after + during storm)

GlobCurrent [surface speed (z=0)]----

- [Q] What happened to the loop current after the hurricane passed around October 10, 2024?
 - [A] Seems to have been broken!

VATIONAL WEATHER SERVICE

212

SSH, SST, SSS (GLO12) before and after storm

Building a Weather-Ready Nation // 10

NATIONAL WEATHER SERVICE

ॵ

ž

*>

哭

⊿

51 23 51 23

Subsurface T and S (GLO12) before and after storm

5 days before

1 day before

VATIONAL WEATHER SERVICE

Subsurface T and S (GLO12) before and after storm

Along storm track

1 day after

VATIONAL WEATHER SERVICE

Subsurface T and S (GLO12) before and after storm

5 days after

Notes:

四

⊿

212

- Upwelling along the hurricane path.
- Titling of isotherms/isohalines.
- Loss of stratification in the wake of the storm.

VATIONAL WEATHER SERVICE

Summary:

ž

औ

 \aleph

四

 $\mathbf{\Lambda}$

212

- Ocean reanalysis (Mercator GLO12) compares *well* with satellite data products of SSH, SST, SSS; many similarities in patterns.
 - Differences in resolution of datasets is apparent (GLO12 at 1/12deg vs typical ¼-deg satellite datasets).
- What happens to the hurricane is a result of complex interaction with the ocean: air-sea fluxes are vital. Resolve dynamical interactions:
 - **Ocean**: Surface and subsurface T, S, currents, etc.
 - **Atmosphere**: Clouds, winds, aerosols/spray, etc.
 - Waves: Swell, wind-wave roughness/drag, etc.
 - It remains to be seen how coupled models and assimilation systems depict hurricane atm-ocn-wav response with feedbacks.

Questions?

VATIONAL WEATHER SERVICE