

2021 United Nations 2030 of Ocean Scien

Applying MOM6 for High-Resolution Coastal Modeling of Yeosu-Gwangyang Bay, Korea

<u>Nayoung Park¹</u>, Inseong Chang¹, Jin Yong Choi², Young Ho Kim^{1*}

¹Division of Eath Environmental System Science, Pukyong National University ²Coastal Diaster & Safety Research Department, Korea Institute of Ocean Science and Technology

Contents

1.Introduction

2.Model and Method

3.Results

4.Conclusion & Discussion

5.Future Plan

1. Introduction

Yeosu-Gwangyang Bay, Korea

- Frequent ship traffic due to port, commercial activities ,ferry terminals and fishery activities
- Complex coastline and Shallow depth
- Semi-enclosed sea
- Freshwater inflow from Seomjingang River located in northern
- Seawater in and out through southern channel
- Tidal Currents dominated region

Complicated current expected Understanding 3-Dimensional current is essential

1. Introduction

Coastal Acoustic Tomography (CAT)

- Remote sensing technique by using underwater sound wave
- Measuring reciprocal acoustic signals travel time
- Assumption of the physical variables between through the difference in the sound travel time gap
- Providing the information for mapping complex ocean circulation pattern, by transmitting acoustic signals between multiple stations
- Powerful to monitor ocean regions and ability to improve numerical model performance (Park and Kaneko, 2000).

Fig 2. A schematic diagram of CAT.

Reference

PARK, Jae-Hun. 2000. KANEKO, Arata. Assimilation of coastal acoustic tomography data into a barotropic ocean model. Geophysical research letters., 27.20: 3373-3376.

YG-MOM6

- Based model : GFDL-MOM6
- Domain : 34.78-34.99°N 127.57-127.89°E, (Yeosu-Gwangyang Bay, Korea)
- Resolution : 100m × 100m (Arakawa C-grid), 20 layer (Hybrid coordinate : Z* coordinate + Isopycnal)
- Coastline & Topography : Korea Hydrographic and Oceanographic Agency (KHOA)
- Initial Condition : MOHID (KIOST-KOOS)

		Data source	Variables	Temporal resolution
	Open Boundary Condition	MOHID (KIOST-KOOS)	Temperature, Salinity Velocity(U,V), SSH	3 Hourly
	Surface Boundary Condition	KMA-KIM	Wind Velocity	Hourly
			Air Temperature	3 Hourly
		ECMWF ERA5	Air Pressure, Specific Humidity	6 Hourly
			Net Solar Radiation, Net Thermal Radiation, Total Precipitation	Hourly
	River Discharge	WAMIS (Water Management Information System, Korea)	Runoff	Daily

Data Assimilation

 x_k^a

- Data assimilation technique : Deterministic Ensemble Kalman Filter
- The number of ensemble member : 8

$$X^{a} = X^{f} + K(Y - HX^{f})$$
$$K = P^{f}H^{T}(HP^{f}H^{T} + R)^{-1}$$

DEnKF analysis scheme

(i) Given the forecast ensemble X^f , calculate the ensemble mean, or forecast x^f by $x = \frac{1}{m} \sum_{i=1}^{m} X_i$, and the ensemble anomalies A^f by $A_i = X_i - x$

(ii) Calculate the analysis X^f , calculate the ensemble mean, or forecast x^a by using the Kalman analysis equation $X^a = X^b + K(Y - HX^b)$

(iii) Calculate the analysed anomalies by $A^a = A^f - \frac{1}{2}KHA^f$

(iv) Calculate the analysed ensemble by offsetting the analysed anomalies by the analysis : $X^a = A^a + [x^a, \dots, x^a]$ (Sakov and Oke, 2008a)

Fig 4. Schematic diagram of the Ensemble Kalman Filter. Each red and blue dots indicates the number of initial N_e Ensemble member.

Sakov, P., & Oke, P. R. (2008). A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters. Tellus A: Dynamic Meteorology and Oceanography, 60(2), 361–371.https://doi.org/10.1111/j.1600-0870.2007.00299.x

Fig 6. Schematic diagram of perpetual experiment

Model Performance

Fig 7. The result of the YG model in Aug 2022. (a), Current speed and direction, (b) Temperature, (c) Salinity, (d) Vertical section of V component at red line in (e).

Stable model results despite narrow and shallow areas

Model Performance : Tide

YG Model tide tendency and peak consistent with observations

Model Performance : Current

Fig 9. Comparison result of the YG model V component with ADCP observation.

Overall, V component fit well with ADCP observation, But underestimated in bottom layer

CAT Data Assimilation Result : U and V component

12/16

CAT Data Assimilation Result : Temperature and Salinity

- We have successfully set up a high-resolution MOM6 coastal model for Yeosu-Gwangyang Bay, Korea. (YG-MOM6).
- Tide from the model is consistent with observations, tidal station and ADCP measurements.
- We have also developed CAT data assimilation system.
- CAT assimilation improved not only the currents but also temperature and salinity.
- CAT observation system can improve coastal ocean prediction system.

5. Future Plan

- Quality Control of the CAT data
- Development of real-time Coastal Prediction System applying CAT data assimilation

Fig 12. The real CAT observation data obtain in K1-K3 (a) and location of the multiple CAT will operation (b).

Thank you!

Applying MOM6 for High-Resolution Coastal Modeling of Yeosu-Gwangyang Bay, Korea Keywords : Tomography Data Assimilation, DEnKF, MOM6 Regional Model

Nayoung Park (nypark@pukyong.ac.kr)

