

Integrating SWOT data into a deep learning model for real-time high-resolution prediction of ocean surface currents

Amélie Pesnec Hannah Bull

SAMPHITRITE OCEAN DATA INTELLIGENCE

- Provide high-resolution ocean data, in a real-time manner, to make the right decision at sea
 - Al is used to fuse multiple satellite data
 - Applications:

Green Shipping

Environment

SWOT vs Nadir

Nadir	SWOT
Multiple satellites	1 satellite
Many years of data	~1 year of data
Spatially sparse	120km swath
Effective resolution: 65km	Effective resolution: 15km
High temporal frequency	Low temporal frequency (21-day repeat orbit)

Credits: AVISO

Commission
 C

Our model architecture

4 SWOT data for ocean currents Amélie Pesnec

WOT data for ocean currents

Amélie Pesnec

5 🌀

Multi-stage training strategy

• Stage 1: Nadir and AVISO/DUACS as targets

• Stage 2: SWOT as targets

Data used as targets changes in the different training stages.

Multi-stage training strategy

Evaluation process

We compare our output currents with currents measured by **drifter buoys**.

Lonesco
 Commission

Evaluation process

Intergovernmetal Cosmission Commission Commi

Evaluation process

THE

2021 United Nations Decade of Ocean Science

10 SWOT data for ocean currents Amélie Pesnec

WOT data for ocean currents

Amélie Pesnec

Results in the Great Pacific Garbage Patch

2021 United Nations Decade of Ocean Science

> Evaluation done with drifter data between March and September 2024

Training with SWOT data as targets gives us more accurate predictions.

Angle error

unesco

2021 United Nations Decade of Ocean Science

Amélie Pesnec

Results in the Great Pacific Garbage Patch

Evaluation done with drifter data between March and September 2024

Training with SWOT data as targets alleviates the magnitude underestimation bias.

Commission Mersovernmetal Commission Commission Mersovernmetal Mersovernm

Results in the Great Pacific Garbage Patch

Intersystem Carangerspic Carangerspic Carangerspic

Results in the North Atlantic

After being trained with SWOT data as targets, both angle and magnitude performance are improved.

Magnitude error, computed on correct angles (<15°)

Above 25 cm/s
Between 15 and 25 cm/s
Between 5 and 15 cm/s
Between 0 and 5 cm/s

- Training with Nadir, SWOT... and drifters
- Not just nowcasts but 7-day forecasts
- Global model with state-of-theart performance!
- → Inès Larroche, Thursday morning, Room IV

