

Canada

Coupled Canadian Arctic Prediction System version 2 – A multidisciplinary approach for coupled forecasting

in the Arctic

F. Dupont, J.-P. Paquin, S. MacDermid, G. C. Smith, F. Roy, M. Plante, B. Casati, D. Paquin-Ricard, M. Faucher, J.-F. Lemieux, M. Gheta, G. Sutherland, F. Lemay, F. Davidson

Environment and Climate Change Canada, Dorval, Québec, Canada

Defence

Défense nationale

Canadian Arctic Prediction System (CAPS)

Page 2 – 30 May, 2016

Coupled CAPS v2

High-resolution coupled atmosphere-ice-ocean prediction system

- In support of Operations in Canadian Arctic
 - Airplane visibility, marine emergency response, marine acoustics, environmental prediction, transportation (DND, CCG, EC, local communities)
 - WMO metareas 17 &18
- Coupled atmosphere-ice-ocean model
 - GEM (3.0 km)
 - Predicted particle properties microphysics
 - NEMO-CICE (2-8 km)
 - Tides, landfast ice
 - Wave-ice interactions
 - Atmospheric pressure effect (Storm Surge)
 - 48 h forecasts (twice a day)

Impact of small-scale coupled atmosphere-ice-ocean interactions in the Canadian Arctic Prediction System (CAPS)

Forecast for 2017-01-01

CAPS product for **MOSAIC**

- Daily image production:
 - Internal ice pressure
 - Tendency of internal pressure
 - Shear rate
- Images produced in real-time and sent to ftp server for use on Polarstern for MOSAIC
- Investigate usefulness for scientific planning
- Study interesting cases
 - Forecasted significant divergence around Polarstern for storm on Nov. 17, 2019
 - Lead opened up between Polarstern and on-ice camps

Forecast valid: Nov. 15, 201

Zoom

86°N

85°N

84°N

83°N

82°N

86°N

85°N

84°N

83°N

82°N

20

Environment and Climate Change Canada Page 6 - 30 May, 2016

Environnement et

Changement climatique Canada

Canada

CAPS product for MOSAiC

- Daily image production:
 - Internal ice pressure
 - Tendency of internal pressure
 - Shear rate
- Images produced in real-time and sent to ftp server for use on Polarstern for MOSAIC
- Investigate usefulness for scientific planning
- Study interesting cases
 - Forecasted significant divergence around Polarstern for storm on Nov. 17, 2019
 - Lead opened up between Polarstern and on-ice camps

Page 7 – 30 May, 2016

CAPS v2 status

Uncoupled version running since August 2023

Development of coupled CAPS (C-CAPS)

- Update of ocean suite & coupled configuration
- Atmosphere : CAPS (HRDPS-North) IC-4 (latest) configuration
- Ice-Ocean : Regional Ice-Ocean Prediction System (RIOPS: NEMO3.6+CICE6)

C-CAPS test phase (ongoing)

- Svalbard Marginal Ice Zone Project (focus-arctic.com/svalmiz2024.html)
 - ECCC participating in international Coupled model intercomparison project
- Final Cycles (internal requirement)

Creation of CAPS Working Group

- Multidisciplinary group with expertise in Research & Development from Atmosphere, Ocean & Sea ice
- Project management & coordinated experiments
- Model development
- Improvement of evaluation strategies
- User applications and products

C-CAPS objectives & Milestones

Technical - Propose C-CAPS for implementation in operations*

- Timeline: before end-of-fiscal year (& before freeze due to computer migration)
- Proposed: *experimental status

Scientific – improve evaluation at high-latitudes

- Timeline: ongoing requires long-term commitments & efforts
- Key aspects
 - Standard NWP evaluation (focused on land & atm profiles)
 - Develop evaluation metrics suitable for Arctic environment
 - Clouds & visibility
 - Atmospheric boundary layer physics
 - Atmosphere-ocean turbulent flux
 - High-resolution sea ice motion, deformation & pressure
 - Impact of coupling on forecasts (i.e. conditional verification, specific meteorological events & conditions)

C-CAPS improved evaluation at high latitudes

Special observation campaigns

- Iceland-Greenland Seas Project (Feb-March 2018) (Renfrew et al. 2019; <u>https://doi.org/10.1175/BAMS-D-18-0217.1</u>)
 - Winter 2018
 - Multiplatform observational campaign
 - Buoys, ship & aircraft measurements
- MOSAiC Expedition (mosaic-expedition.org)
 - Sep 2019 Oct 2020
 - Polarstern drift in Central Arctic
- Svalbard Marginal Ice Zone Project
 - April-May 2024

Environment and Climate Change Canada

CAPS - longer-term model improvements

Improving Winter Cloud Prediction Accuracy

- Known issues in winter forecasts related to cloud representation
- Possible Impacts being investigated :
 - Cloud fraction, Cloud ceiling Radiative balance Near-surface temperature and humidity Horizontal Visibility

Marginal Ice Zone modelling:

- Wave-ice interaction
- Form drag formulation, Ice drift
- Impact of coupling on representation of ice fractures / leads (LKFs)

Page 11 - 30 May, 2016

Environment and Climate Change Canada

Thank you!!

Extra slides

Environment and Climate Change Canada Page 13 – 30 May, 2016 Environnement et Changement climatique Canada

Forecast from global coupled model (GEM-NEMO-CICE; 33km-15km resolution)

Environment and Climate Change Canada Environnement et un caster E. Roy, J.-M. Belanger

Impact of a dynamic ice cover on coupled forecasts over the Beaufort Sea

- Coastal polynya formation sensitive to:
 - Atmosphere-ice and ice-ocean stresses, ice thicknesses, landfast ice parameterization, uncertainty in atmospheric forecasts

Difference in ice fraction (CPL-UNCPL) Difference in 2m temperature

Forecast from global coupled model (GEM-NEMO-CICE; 33km-15km resolution)

Environnen enterun caster F. Roy, J.-M. Belanger

CAPS non coupled vs IGSP YOPP Observations

Sensible Heat flux differences along flight paths

- Cold biases over the ice (no leads)
- · Overestimated wind speeds over ice
- Sensible heat fluxes
 - · Underestimated sensible heat flux over the ice (no leads)
 - Overestimated sensible heat fluxes at ice edge (abrupt transition vs. obs)
 overestimated against ship data (>100 Wm⁻² differences)
- Biases all highly dependent ice edge location & representation

M. Gheta – Summer 2023 internship

CAPS Schematic

- **GDPS:** Global Deterministic Prediction System
- **GIOPS: Global Ice Ocean Prediction System**
- **RIOPS: Regional Ice Ocean Prediction System**
- **CAPS: Canadian Arctic Prediction System**

CAPS Configuration

Coupled GDPS-GIOPS

Page 18 – 30 May, 2016

Environment and Climate Change Canada

Impact of atmospheric resolution on winds

Difference between daily 2.5km and 15km 48hr forecasts for August 2012

*

Environment and Climate Change Canada Environnement et Changement climatique Canada Chris Subich

CAPS YOPP Evaluation

Performance of the Canadian Arctic Prediction System during the YOPP Special Observing Periods

Barbara Casati ^{1,*}, Tom Robinson², François Lemay², Morten Køltzow³, Thomas Haiden⁴, Eva Mekis ⁵, Franck Lespinas², Vincent Fortin ¹, Gabrielle Gascon⁶, Jason Milbrandt¹, and Greg Smith¹

- CAPS outperforms RDPS and GDPS in predicting nearsurface temperature, dewpoint, temperature, wind and precipitation, in both seasons and domains
- YOPP verification exercise revealed some issues related to the verification of surface variables and has led to better verification practices for the polar regions (and beyond)

ATMOSPHERE-OCEAN 61 (4) 2023, 246–272 https://doi.org/10.1080/07055900.2023.2191831 2023 La Société canadienne de météorologie et d'océanographie

CAPS 3-km resolution vs operational GDPS

- Enhanced Physical Process Representation: Atmospheric modeling at a 3-km resolution provides a more accurate depiction of physical processes.
- **Reduced Near-Surface Errors**: This resolution is likely to decrease errors in representing conditions near the surface.
- Improved Microphysics Resolution: Phenomena related to cloud formation and precipitation are better resolved.
- Ocean-Ice Coupling: Improved parameterizations of iceocean, atmosphere-ocean & atmosphere-ice exchanges.

Surface summary score cards

North America > 60°N

CAPS-RIOPS vs CAPS: winter summer

	00	12	00	12
TT bias	++	++		
TT stdev	++	++		
TD bias	++	++		
TD stdev	++	++		
PN bias	++	++	1	Ι
PN stdev	1	1	++	++
UV bias	++	++	1	1
UV stdev	1	1	1	1
WD hss	1	1	Ι	1
PR6h fbi	1	1	1	1
PR6h hss	1	1	1	1
TCC fbi	1	1	1	1
TCC hss	1	1	1	1

North Pole (> 60°N) thin2 CAPS-RIOPS vs CAPS:

	winter		summer	
	00	12	00	12
TT bias	++	++		
TT stdev	++	++		
TD bias	++	++		
TD stdev	++	++		
PN bias	++	++	++	++
PN stdev	++	++	1	1
UV bias			1	1
UV stdev	1	1	1	1
WD hss	1	1	1	1
PR6h fbi	1	1	1	1
PR6h hss	1	Ι	Ι	1
TCC fbi	++	++		
TCC hss	Ι	1		

nada

CAPS-RIOPS vs CAPS, North America North, winter 2017, 00 run

TT,TD : improved bias, stdev; PN improved bias, neutral stdev; UV improved bias, neutral stdev (not shown); WD neutral hss.

CAPS-RIOPS vs CAPS, North America North, summer 2016

TT,TD : worse (colder) bias, stdev; PN neuter bias, better stdev; UV neutral bias, stdev (not shown); WD neutral hss; 00~12 runs.

