

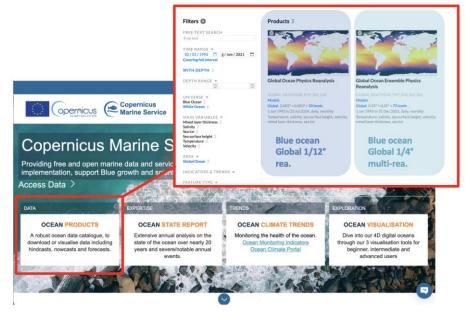
The Copernicus Marine global "blue/white" ocean reanalysis: past, present, future

R. Bourdallé-Badie, J.-M. Lellouche, E. Greiner, G. Garric, M. Drévillon, V. Ruault, L. Parent, A. Melet, C. Regnier, M. Clavier, Y. Drillet, P.-Y. Le Traon

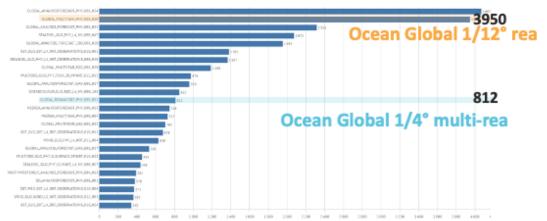
mercator-ocean.eu/marine.copernicus.eu

Outlines

- Description and use of the global blue/white ocean reanalyses of Copernicus Marine
- Future evolution of the blue/white ocean reanalyses
- Example of preliminary result: Mass control of the system
- Conclusions/perspectives



Current Copernicus Marine global "blue/white" ocean reanalyses



- Copernicus Marine proposes 2 global "blue/white" ocean reanalyses:
 - GLORYS12V1: High resolution at 1/12°
 - GREP: Multi-reanalysis at 1/4°
- Both reanalyses products are free of charge and available on the Copernicus Marine portal
- Both reanalyses cover the "altimetric" period, called stream2 (1993-present).
- With more than 1.2 Peta octet downloaded and 5000 users in 2023 over last year, these reanalyses are ones of the most downloaded product of Copernicus Marine catalogue

Copernicus marine offer for blue/white reanalysis

Number of download of CMEMS products for sept-2022 to sept-2023

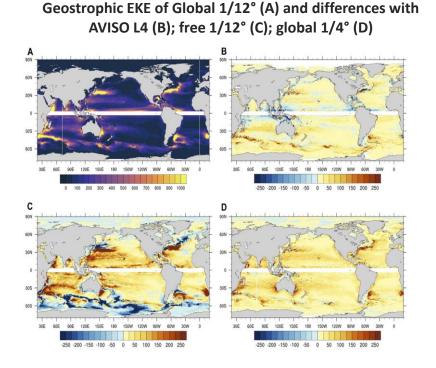
Description of global "blue/white" ocean reanalyses

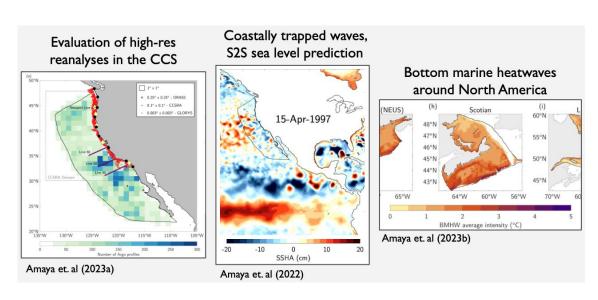
- For both reanalyses, 3D variables (temperature, salinity, zonal and meridian velocities) or 2D variables (sea surface height, mixed layer depth, sea ice concentration and sea ice thickness) are available.
- GLORYS12V1 (Lellouche et al. 2021) allows a better representation of mesoscale activity than reanalyses at coarser resolution
- GREP multi-reanalysis at ¼° resolution allows a first estimate of robustness/limitation of the ocean reanalyses e.g. transport (Mayer et al. 2023), Sea Level (Storto et al. 2017), Steric and OHC (Storto et al., 2018), sea ice (Chevalier et al. 2017; Uotila et al. 2019; Iovino et al. 2022), AMOC (Jackson et al. 2019)).

General characteristics of GLORYS12V1 (1/12°)

GLORYS12V1				
Ocean Models	Ocean Models			
OGCM	NEMO v3.1 at 1/12; 50 vertical levels, LIM2 (mono category)			
Atmospheric Forcing	ERAinterim 3h (Era5 hourly after 2019)			
Runoff	Climatological runoff (Dai&Trenberth)			
Assimilation characteri	Assimilation characteristics			
DA scheme	SAM2V1 +BC			
Analysis	SEEK			
SSH trend	Imposed by SLA assimilation, no control mass/steric			
SSS/SST	AVHRR			
T/S	EN4 "weak" assimilation at depth			
T/S profile	CORA data base			
Assim. frequency	weekly			

General characteristics of GREP (1/4°)


System name		CGLORS Ogene		GLORYS 📻 🚟	
Ocean M	Ocean Models				
OGCM			NEMO at 1/4°, 75 vertica But different parameteriza		
Ice mode	I	LIM2	LIM2	LIM2	
Atmosphe Forcing	eric	Era-Interim/Era5			
Time rang	ge	1993-2021			
Assimilat	Assimilation characteristics				
DA schem	ne	3DVAR	3D_NEMOVAR	SEEK	
SLA assim	ĩ	DT2014			
In situ		EN402	EN402	CORA	
SSS/SST/3 relaxatior		Flux-correction everywhere	Nudging	None	
Sea-Ice D	A	Nudging	L4 SIC	L4 SIC	
Assim. frequency	y	weekly	weekly	weekly	


Example of scientific studies based on GLORYS12V1

GLORYS12V1 is largely used for scientific studies: Lellouche et al. 2021 (reference paper, more 20 citations); Artana et al. 2018b; Dimoune et al. 2022; Chafik et al. 2023; Amaya et al. 2022 & 2023; Alexender et al. 2023; du Pontavice et al. 2023; Cadima et al. 2024; ...

- EKE pattern in good agreement in experiments with DA (1/12° & 1/4°)
- Higher EKE value everywhere with the increase of resolution
- Higher level of energy in global 1/12° compared to AVISO L4 product (consequence of higher spatio-temporal resolution in the reanalyse)

Regional process studies

- GLORYS12V1 can be used in various regional studies, for example:
 - o Current in California system
 - Tropical wave propagation
 - Bottom temperature around north America

Evolution of GLORYS12 planed in 2026

- New Reanalyse at 1/12° is broadly based on the new global real time Mercator system at 1/12° (see Lellouche's presentation for bias correction, analysis kernel,...)
- Main differences compared to the real time system:
 - Extended ORCA grid (Antarctica ice shelves) + 75 vertical levels
 - Forced by ERA5/1H atmospheric reanalysis
 - Interannual river discharge of 13 major rivers from GloFAS (Copernicus Emergency Mgt Service)
 - Assimilation of reprocessed data (SLA, OSTIA, CORA, OSI SAF)
 - Add Sea Ice mass in the controlled mass budget

GLORYS12V1			
Ocean Models			
OGCM	NEMO v3.1 at 1/12; 50 vertical levels, LIM2 (mono category)		
Atmospheric Forcing	ERAinterim 3h (Era5 hourly after 2019)		
Runoff	Climatological runoff (Dai&Trenberth)		
Assimilation characteristics			
DA scheme	SAM2V1 +BC		
Analysis	SEEK		
SSH trend	Imposed by SLA assimilation, no control mass/steric		
SSS/SST	AVHRR		
т/s	EN4 "weak" assimilation at depth		
T/S profile	CORA data base		
Assim. frequency	weekly		

New release in 2026

GLORYS12V2			
Ocean Models			
OGCM	NEMO v3.6 at 1/12; 75 vertical levels, LIM3 (multi-category)		
Atmospheric Forcing	Whole Era5 (hourly)		
Runoff	Interannual runoff (GloFas debiased for 13 major rivers)		
Assimilation characteristics			
DA scheme	SAM2V2 + New_BC		
Analysis	SEEK with 4D analysis		
SSH trend	Mass imposed (GRACE, ISBA,); global steric only diagnosed		
SSS/SST	OSTIAv2 reprocessed SST		
T/S	EN4 "weak" assimilation at depth		
T/S profile	CORA data base		
Assim. frequency	weekly		

General characteristics of GLORYS12V1 reanalysis

General characteristics of GLORYS12V2 reanalysis

0m

Construction of SLA model equivalent in GLORYS V2

Products available to estimate Sea Level variations:

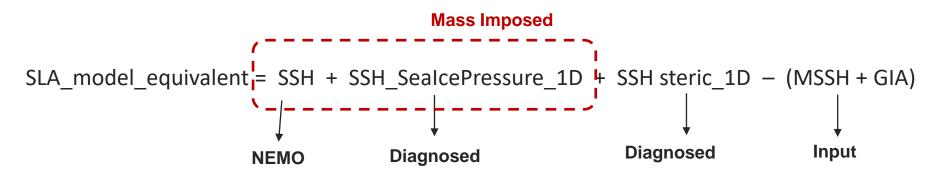
• GRACE :

mass = liquid water + Sea Ice ! (Not only "sea water" !!!)
No Steric info
No MSSH/GIA info
No atmo Pressure info

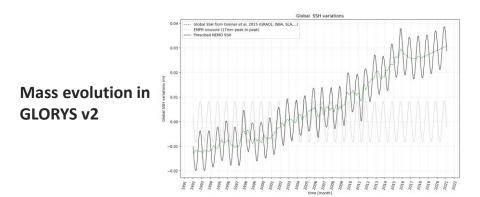
• AVISO SLA L3:

Total MSL: Mass (ocean/Sealce) + Steric variations No MSSH/GIA info No atmo Pressure (filtered)

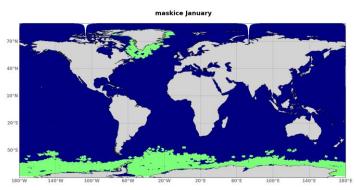
- NEMO, Bousinesq approx. + Sealce levitating (not embedded): Liquid mass + Sealce mass + local steric gradient
 No global steric
 No Sealce pressure effect
 No atmo Pressure (in this version)
 - => SSH equivalent construction with NEMO:


SSHeq = SSH_nemo + SSH_steric_1D + SSH_Sealce(_1D) - GIA

Exchanges and Pressures between Atmo/Ocean/Sealce/Land atmosphere ocean Mass observed by **SLA observed** GRACE by Alti Mass exchange between -Atmospheric and ice pressure over ocean

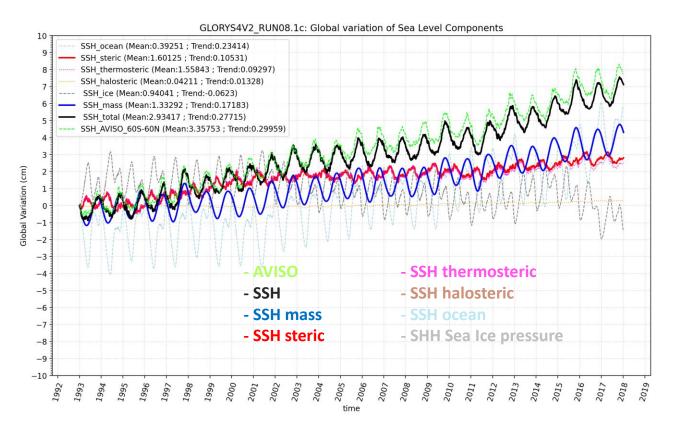


NEMO GMSL = Mass only, SSH due to Sea Ice pressure and steric effect are diagnosed (assumption: uniform isostatic response of pressure induced by Sea Ice mass variations)



Mass (Ocean/Sealce) forced through EMP budget toward an estimated deduced from observation (GRACE+ISBA,..).

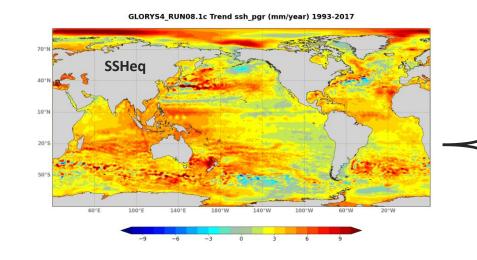
=> Total mass evolution (black) = Greiner and Meyssignac (2015) estimate (green) + Seasonal EMP cycle (grey) with 17mm peak to peak (Chandanpurkar et al. 2021)


Example of the Iceberg climatology (January) where interannual mass adjustment is distributed

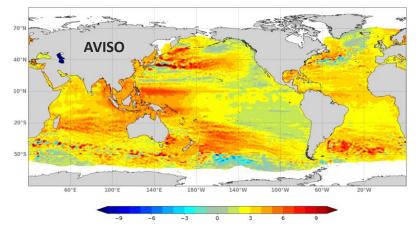
GMSL components evolution vs AVISO in test at ¼° resolution

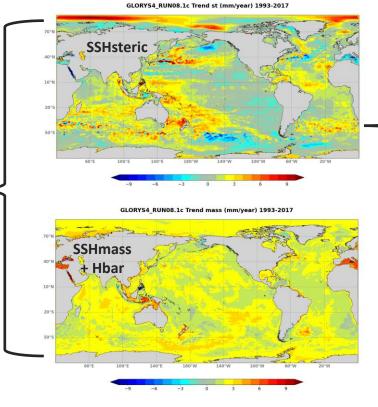
- GMSL trend in good agreement with AVISO estimate.
- Mass trend prescribed (60% of the total); steric trend at 1mm/year.
- Corrected repartition thermo/halo steric
- Importance of (negative) Sea Ice trend in the global budget.

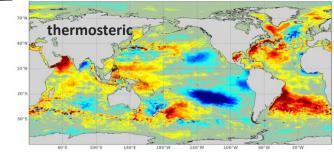
Components	Trend (mm/year)
AVISO	3 ± 0.3
SSH total (mass+steric)	2,8
SSH mass	1.7
SSH ocean	2.3
SSH Sealce	-0.6
SSH steric	1
SSH thermosteric	0.9
SSH halosteric	0.1

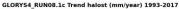


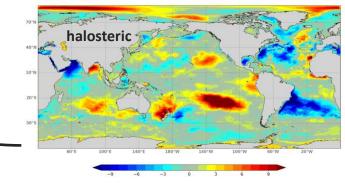
Mean Sea Level trends (1993-2017)



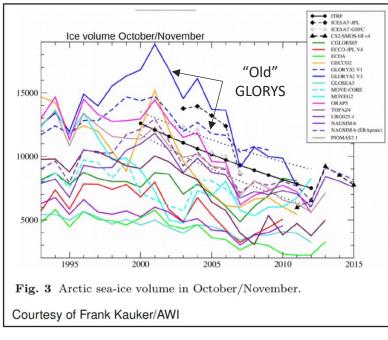


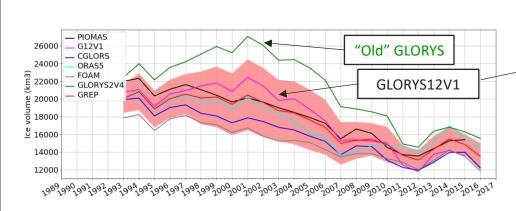

GLORYS4_RUN08.1c Trend termost (mm/year) 1993-2017

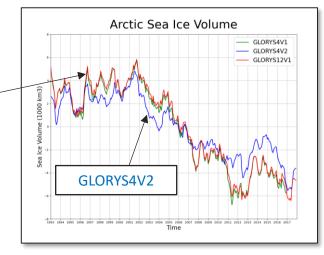



AVISO Trend sla (mm/year) 1993-2017

- Very good agreement between AVISO and model SSH_equivalent
- Steric/mass repartition reasonable
- Sulu, Med and Black Seas: suspicious signals in mass trend. Should be compared with others estimates
- High spatial variability in thermos/halo trends




Arctic sea ice volume and thickness

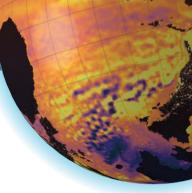

- Great validation effort on Sea ice thickness (in situ, satellite).
- Large uncertainties in reanalyses and in the observations
- All reanalyses agree that Arctic sea ice volume has declined, but not by how much

Annual mean sea ice volume

• Already large reduction of sea ice volume with GLORYS12V1 \rightarrow more in accordance with others reanalyses. No changes with resolution

- Reduction of the negative trend with the upcoming GLORYS2V4
- No changes with resolution

Better accordance of GLORYS Arctic sea ice volume with ensemble of reanalysis with time being ...


Also see Uotila et al. 2019 – POLAR ORA-IP

Evolution of GREP

- Future GREP reanalyse (at 1/4°) will be based on upgrade version of each member
- ERA5 forcing, general use of multi-category of sea ice model, upgrade of assimilated observations.
- New member(s) will be added to enrich the uncertainty estimate

System name				GLORYS 🕞 🚟		
Ocean Mo	Ocean Models					
OGCM		NEMO at 1/4 °, 75 vertical levels But different parameterizations				
Ice model		LIM2	LIM2	LIM2		
Atmospher Forcing	ric	Era-Interim/Era5				
Time range	e	1993-2021				
Assimilatio	Assimilation characteristics					
DA scheme	е	3DVAR	3D_NEMOVAR	SEEK		
SLA assim		DT2014				
In situ		EN402	EN402	CORA		
SSS/SST/3I relaxation		Flux-correction everywhere	Nudging	None		
Sea-Ice DA		Nudging	L4 SIC	L4 SIC		
Assim. frequency		weekly	weekly	weekly		

New release end of 2025

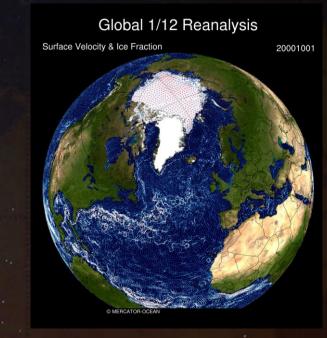
System name	CGLORS O mm		GLORYS 😁	New member
Ocean Models				
OGCM				
Ice model	CICE	SI ³	SI ³	
Atmospheric Forcing				
Time range	1993-2024			
Assimilation characteristics				
DA scheme	3DVAR	3D_NEMOVARv6 Revised R and QC	SEEK	
SLA assim	DT2021 + new MDT + spatial <u>unbias</u>	DT2021	DT2021 + Mass imposed (GRACE, ISBA,); global steric only diagnosed	
In situ	EN4 <mark>2</mark> 2	EN422 CORA		
SSS/SST/3D relaxation	Flux-correction everywhere	WOA19 climatelegy for		
Sea-Ice DA	Bivariate (SIC/SIT)	L4 SIC L4 SIC		
Assim. frequency	weekly	weekly	weekly	

General characteristics of future GREP

General characteristics of current GREP

• <u>Conclusion:</u>

- GLORYS12V1 and GREP are broadly used in the community
- New versions are under development
- Promising results on new treatment of GMSL (Mass/steric separation) and Arctic sea ice volume
- Perspectives:
 - 2025 production of new global 1/12° (and twin ¼°) reanalysis covering 1993-present. 1 year is needed to produce Global 1/12° and release of products in 2026
 - Production of a new version of GREP based on upgraded global ¼° reanalyses, release end of 2025.
 - New Global ¼° reanalysis will be ready in 2025 and GLORYS12V2 in 2026 for new intercomparison exercises: MER-EP (Drévillon's talk on monday)



ADVANCING OCEAN PREDICTION SCIENCE FOR SOCIETAL BENEFITS

Thank you!

EU

@ceanobs

INTERNATIONAL OCEAN GOVERNANCE

Canada