

Weak Constraint 4D-Var Data Assimilation in the Regional Ocean Modeling System (ROMS) using a Saddle-Point Algorithm

Andy Moore, UC Santa Cruz Hernan Arango, Rutgers University John Wilkin, Rutgers University Chris Edwards, UC Santa Cruz

NOAA

Incremental Weak Constraint 4D-Var Fisher and Gürol (2017)

<u>Saddle-Point 4D-Var in the California Current System</u> <u>using the Regional Ocean Modeling System (ROMS)</u>

Two ROMS configurations:

- $1/3^{rd}$ degree resolution, 42 σ -levels
- COAMPS surface forcing
- ECCO open boundary conditions
- Observations:
 - satellite SST
 - Aviso altimetry
 - Argo profiling floats
- 4-day 4D-Var windows
- Standard test case (WC13)
- 1/10th degree resolution, 42 σ -levels
- ERA surface forcing
- Global HYCOM open boundary conditions
- **Observations:**
 - satellite SST
 - Aviso altimetry
 - Argo profiling floats
- 8-day 4D-Var windows

Forcing formulation: RBCG (Restricted B-preconditioned CG)

Saddle-point formulation: SP4DVAR

Single 4d-Var cycle: 1 outer-loop, n=8 sub-intervals, Q=0.2B

Convergence Validation

1/3rd degree resolution, 4-day assimilation window, 3-7 Jan 2004

1 outer-loop, 4-day window, n=8 sub-intervals, Q=0.2B

— RBCG (forcing formulation of 4D-Var)

— SP4DVAR (saddle-point formulation)

Obs: Blended SST, SSH (Aviso), in situ T & S (XBT, CTD, Argo)

Termination before Convergence

SST 4D-Var Increments: 10km resolution, 3-11 Jan 2004

SST 4D-Var Increments: 10km resolution, 3-11 Jan 2004

$$J_o = \left(\boldsymbol{y} - H(\boldsymbol{x}) \right)^T \boldsymbol{R}^{-1} \left(\boldsymbol{y} - H(\boldsymbol{x}) \right)$$

Conditional probability: $J_o \propto -\ln(P(\boldsymbol{x}|\boldsymbol{y}))$

SST 4D-Var Increments: 10km resolution, 3-11 Jan 2004

Scales as ~(2n)-1

Summary and Conclusions

- Saddle-point 4D-Var has the potential to be a game-changer!
- Saddle-point 4D-Var will run *much* faster than RBCG on very large HPC systems
- Outstanding performance issues in ROMS-SP4DVAR:
 - improve efficiency of adjoint model
 - solution assembly & GMRES overhead
 - preconditioning
- Ongoing work: specification of model error covariances, **Q** (ML?)

Moore, A.M., H.G. Arango, J. Wilkin and C.A. Edwards, 2023: Weak constraint 4D-Var data assimilation in the Regional Ocean Modeling System (ROMS) using a saddle-point algorithm: Application to the California Current Circulation. Ocean Modelling, https://doi.org/10.1016/j.ocemod.2023.102262.

2021 United Nations Decade 2030 of Ocean Science for Sustainable Develop

ADVANCING OCEAN PREDICTION SCIENCE FOR SOCIETAL BENEFITS

Thank you!

EU

@ceanobs

INTERNATIONAL OCEAN GOVERNANCE

