

2021 United Nations of Ocean Scien 2030 for Sustainable

High-resolution real-time forecasting systems and services in support of fine-scale field experiments in the Western Mediterranean Sea

Baptiste Mourre, Máximo Garcia-Jove, Nikolaos D. Zarokanellos, Alex Santana, Pierre Lermusiaux, Patrick J. Haley, Chris Mirabito, Helga Huntley, Irina Rypina, Daniel Rudnick, Joaquín Tintoré (bmourre@imedea.uib-csic.es)

SOCIBBalearic Islands
Coastal Observing
and Forecasting System

Massachusetts Institute of Technology

CALYPSO

CALYPSO: Coherent Lagrangian Pathways from the Surface Ocean to Interior

CALYPSO: Coherent Lagrangian Pathways from the Surface Ocean to Interior

→ 3 intense observational campaigns

> Ocean Predict

- 2 ships
- > 1600 uCTD profiles
- 3 gliders
- > 80 drifters

- 2 ships
 - > 3500 uCTD profiles
- 8 gliders
- > 180 drifters

> 300 drifters

(Mathieu Dever, Amala Mahadevan)

WMOP Western Mediterranean OPerational modelling system

WMOP Western Mediterranean OPerational modelling system

Ocean

1-way nesting Delayed time – free run Reanalysis **Data assimilation:**

Multimodel Local Ensemble Optimal Interpolation

Daily analysis, including glider and underway CTD data during the 2022 campaign.

ightarrow 72-hour forecast horizon

Real-time model results, validation against observations and advanced Lagrangian diagnostics were made available through several web pages with the objective to help identifying frontal and subduction areas.

Ocean

redict

Analysis of small-scale dynamics and associated 3-dimensional pathways

Help for sampling design

Support during the campaigns

(Garcia-Jove et al., JGR-Oceans, 2022)

SST maps on 23-Feb-2022

2021 United Nations Dec 2020 of Ocean Science

SST maps on 23-Feb-2022

Glider sampling design and data assimilation

8 gliders 9 Feb – 29 June 2022

Glider sampling design and data assimilation

8 gliders 9 Feb – 29 June 2022

WMOP surface density anomaly [31-Mar-2022

[04-Apr-2022]

3

2.5

3.5

Parcels are seeded at every model gridpoint (2km-res) (No at 5m depth, and advected by model velocities (u, v, w) during 15 days.

Trajectories of surface particles reaching at least 100m depth in 10 days [Starting date: 18-Feb-2022] (m) 100 42.5 50 km 42 [10 days – 100m] 80 41.5 • Initial position 60 atitude (^o 41 40.5 40 40 20 39.5 39 0 6 0 2 3 5 Δ Longitude (^oE)

Parcels are seeded at every model gridpoint (2km-res) (No at 5m depth, and advected by model velocities (u, v, w) during 15 days.

Ocean

Parcels are seeded at every model gridpoint (2km-res) at 5m depth, and advected by model velocities (u, v, w) during 15 days.

→ Subduction from the surface to below 100m identified in the frontal area

(Initial depth: 50m)

Subduction area north of Menorca identified in Chla observations from a profiling float.

Conclusions

- Collaborative high-resolution real-time forecasting effort providing support to smallscale ocean observing experiments
- Simulations and modelling products developed during three campaigns: opportunity for incremental improvements!
- Modelling tools applied for predictions, nested free runs on refined grids and reanalysis, providing a satisfactory level of realism

→ Used for sampling design, characterization of multivariate variability, understanding of dynamical processes, Lagrangian analysis and three-dimensional pathways at meso- and submesoscale

2021 United Nations Decade of Ocean Science 2030 for Sustainable Development

SYM P#S 22

ADVANCING OCEAN PREDICTION SCIENCE FOR SOCIETAL BENEFITS

Thank you!

Mon 18 - Data assimilation

SWOT satellite sea level observations: a game-changer for high-resolution ocean prediction? Insights from a Western Mediterranean Seg experiment

Theme 5.2 (Data assimilation)

EU

@ceanobs

INTERNATIONAL OCEAN GOVERNANCE

U COMPONENT TO GLOBAL OCEAN OBSERVATION

Ô

