

A physical-

biogeochemical hindcast for the Nordic Seas and Arctic 1950-2018

Annette Samuelsen (annette.samuelsen@nersc.no) ⁽¹⁾, Fabio Mangini ⁽¹⁾, Laurent Bertino ⁽¹⁾, Achref Othmani ⁽¹⁾, Veli Çağlar Yumruktepe ⁽¹⁾, Jiping Xie ⁽¹⁾, Alfatih Ali ⁽²⁾ Till Soya Rasmussen ⁽³⁾ Shuang Gao ⁽¹⁾

- (1) Nansen Environmental and Remote Sensing Centre
- (2) The Norwegian Meteorological Institute
- (3) Danish Meteorological Institute

ARCTIC

OCEAN

MFC

Until 31 Dec. 2024

1002L1-COP-

Opernicus mercator

Background

- In the context of climate change, we wish to understand future changes in physical and biogeochemical ocean conditions. To do this, a good understanding of past variability is essential.
- Past observations alone provide an incomplete picture, but model simulations of the past can help fill knowledge gaps and enhance our understanding of the processes involved.
- The challenge to providing these simulations is that there are few observations from the past to initialize and constrain the long-term simulations.
- Here, we present one attempt at a regional long-term simulation for the Arctic forced by atmospheric reanalysis and a climate prediction reanalysis on the lateral boundaries.
- The model has been evaluated with respect to climatology, trend, and variability.
- I will present fresh results and some recommendations for the road forward.

Model: HYCOM-CICE

- Hybrid Coordinate Ocean model, HYCOM (U. Miami)
- Hybrid coordinate
- Isopycnal in the interior
- Z-coordinate in the surface layer
- Sigma coordinates close to the coast (optional)

Prognostic variables: u,v, t, s, dp (layer thickness)

CICE: EVP sea ice model

Model domain and resolution in km

esco phic h

Model forcing and configuration

- Atmospheric forcing: ERA-5
- Lateral boundaries NorCPM Norwegian Climate Prediction Model (1 member)
- River forcing: ArcticHype + Greenland runoff: <u>monthly</u> <u>climatology.</u>
- No tides
- No sea level pressure effect on sea level

CICE

- Five sea ice thickness categories
- Freezing temperature is a linear function of salinity

50 vertical layers: 10 are fixed z-layers and 40 hybrid layers with density levels adjusted to represent the water masses in the Arctic.

Initialization and bias correction

- NorCPM is run as a climate model until 1950, then run with assimilation of T and S anomalies. Updates sea ice.
- The model was initialized in September 1940 using the bias-corrected climatology based on NorCPM 1940-1949.
- Lateral boundaries nudged to monthly NorCPM with • constant bias correction:
 - Delta method based on climatology 1981-2010.
 - Monthly bias correction destroyed the seasonal cycle on the Pacific side.
- Analyzed results 1950-2018.

1970

1980

1990

2000

2010

2020

C

2021 United Nations Decade

Comparison to climatology: temperature (1981-2010)

2021 United Nations Decade

Comparison to climatology: surface salinity (1981-2010)

Sea ice variability

Sea ice extent has a persistent positive bias, but with similar interannual variability to the observations

Sea ice volume has a reasonable value and decreases with time

Sea ice variability

Sea ice extent has a persistent positive bias, but with similar interannual variability to the observations

Sea ice volume has a reasonable value and decreases with time

Sea level variability

Comparison with: • tide gauges northward of 45°N through linear correlation of:

o detrended ○

o deseasoned

sea surface height.

Mixed results with correlations even:

- between 0.0 and 0.2(between Kara and Laptev Seas)
- higher than 0.8 (mostly northern Europe)

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Temperature trends (at 5m depth)

Model trends compared to EN4 Computed based on 1950-2017 Partial agreement:

• in the Arctic

Hindcast mainly differs in:

- Kara Sea 0 (anomalously low trends)
- **Greenlands Sea** 0 (anomalously high trends)
- Agree on warming in the Barents Sea

EN4: doi:10.1002/2013JC009067.

Example: Greenland Sea

grid point south-east of Svalbard (~ 77N and 12E)

Maybe, hindcast with:

- wider sea-ice edge than in observations
- \circ up early 2000s
- \circ better agreement since early 2000s

on inter-annual timescales.

EN4: doi:10.1002/2013JC009067.

Ocean Predict

Salinity trends (at 5m depth)

Model trends compared to EN4 Computed based on 1950-2017

Beaufort Sea freshening:

 \circ $\,$ not captured by hindcast.

Problem as:

- Arctic circulation mostly controlled by salinity
- freshening might have repercussions on north Atlantic circulation

EN4: doi:10.1002/2013JC009067.

2021 United Nations Decade of Ocean Science 2030 for Sustainable Developmen

Summary & future work

Summary:

- A first attempt on a long hindcast to simulate trends and variability in the Nordic Seas and the Arctic.
- Quality is variable:
 - Salinity bias in the Arctic, which will impact circulation
 - Constraints of the second temperature (after 2000) appears realistic

Furture work

- More in-depth analysis of the results, including water-mass distribution in the surface and at depth.
- Runs with several ensemble members of NorCPM and
- Improve initial conditions
- Interannual river forcing from 1979 (GloFAS)
- Include and evaluate the biogeochemical

2021 United Nations Decad of Ocean Science 2030 for Sustainable Develo

ADVANCING OCEAN PREDICTION SCIENCE FOR SOCIETAL BENEFITS

Thank you!

For questions, contact me at annette.samuelsen@nersc.no

EU

Gimsøy section

Consider Section B:

- **74.0°N**, **5.0°W**
- 68.4°N, 14.0°E

(Lofoten Basin & part of Greenland Basin)

Interesting as it captures:

 $\circ~$ Arctic Front

Gimsøy Section: June 1999

Observations show:

water from Greenland Sea

(S<34.9)

intruding under:

• Atlantic Water at circa 1000m depth.

Comparable salinity values: o in hindcast at same, intermediate level.

