

Development of a Regional Ocean Prediction System for the Southeast Asian Seas

Byoung Woong An, Danielle Su, Rajesh Kumar, Kalli Furtado, Hugh Zhang, Dale Barker

Centre for Climate Research Singapore

OP'24

20th Nov. 2024

Background of the Ocean Model development

- Following the completion of **Singapore's Third National Climate Change Study (V3)** we further developed a regional ocean model for local marine projections of Southeast Asia (SEA) on timescales of near-term to end-of-century climate change.
- This talk: investigate performance of the model for climate variability and change; show its initial application in ocean dynamic downscaling.

V3 atmospheric downscaling provides local and regional climate change projections

Ocean Dynamical Downscaling

NEMO model: domain and bathymetry

- Nucleus for European Modelling of the Ocean (NEMO)
- The horizontal resolution: 1/12 degree (approximately 9 km)
- Terrain-following s-coordinate 51 levels in the vertical
- Global model of ocean tides TPXO9

Initial/Boundary conditions:

- GLORYS12V1 (1/12°, 50 levels)
- CDS-ERA5 1/4°
- SINGV-ERA5 8-km
- WRF-ERA5 8-km
- 1995-2014

Validation of the Model

- Model bias is less than 1°C
- SINGV-forcing gives smallest biases
- WRF-forced simulation is too cold
- Model skill for daily SST is generally high

Interannual variability

- The second EOF mode shows ENSO modulation
- Will there be a change in the dominant modes of SST in the future?

Decadal SST Trends

- The model reproduced the observed spatial distribution of trends for SST
- The observed warming in Indian Ocean is capture by the model
- Trends in small-scale eddies (Tropical cyclone tracks) are present in observation and model
- Equatorial Pacific trends, less well captured: may be due to atmospheric forcing

0.1

0

-0.1

Projected Trends

• The impact of the dynamical downscaling with high-resolution V3 atmospheric forcing

EC-EARTH SSP126 SON Linear trend (2015-2030) SON (°C Yr⁻¹) 0.1 20N 0.08 0.06 0.04 10N 0.02 0 -0.02 0 -0.04 -0.06 -0.08 10S -0.1 90E 120E 150E

Summary

- A new high-resolution NEMO ocean model has been developed for dynamical downscaling applications over SEA.
- The model has been validated and is capable of correctly reproducing observed spatial distributions, interannual variability and trends for SST.
- The impact of the dynamical downscaling with high resolution of V3 atmospheric forcing has been examined and found to be able to resolve small-scale ocean dynamics.
- Future model applications include forecasting fine-scale ocean currents and for understanding the underlying physical processes in this region.

THANK YOU