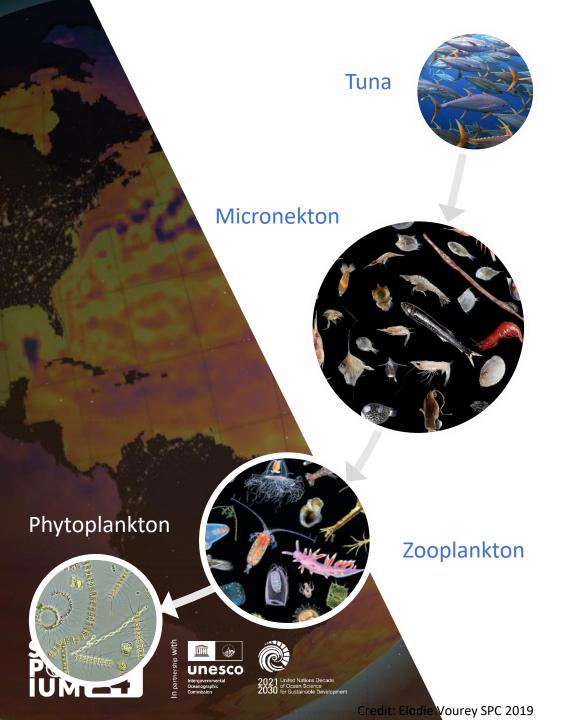


Low and mid-trophic levels reanalysis in the European Copernicus Marine Service catalogue:

State of the current product, and development plan Applications to sciences and society

> Olivier Titaud, Héloïse Magliano, Laurène Mérillet, Sarah Albernhe, <u>Anna Conchon</u>

021 United Nations Decade of Ocean Science for Sustainable Developmen


Glossary

• SEAPODYM: a Low and Mid Trophic Levels biomass density model

- Validation of key variables of SEAPODYM
- Application to science and society
- What's new ? The YYOGA framework

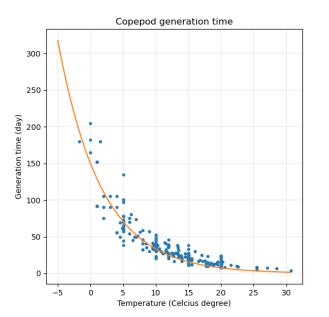
• MICRORYS : the LMTL reanalysis of Copernicus Marine Service

Ocean Low & Mid-Trophic Levels

A very large diversity of species in the ocean constitute the low-trophic (zooplankton) and mid-trophic (micronekton) levels of the food web.

They are the prey of larger size animals -> they play a key role in the marine ecosystem

Micronekton (~1-20 cm), including larvae and juveniles of large fish species, as some **other very large animals** (whale shark or baleen whales) **feed on zooplankton**

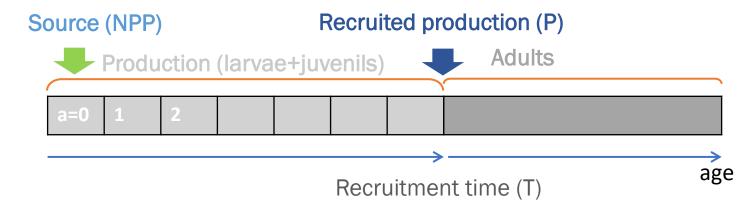

Large fish, cephalopods, seabirds and many marine mammals feed on micronekton.

Yet micronekton it is not studied / observed enough

SEAPODYM is based on advection-diffusionreaction equations Equation for the production

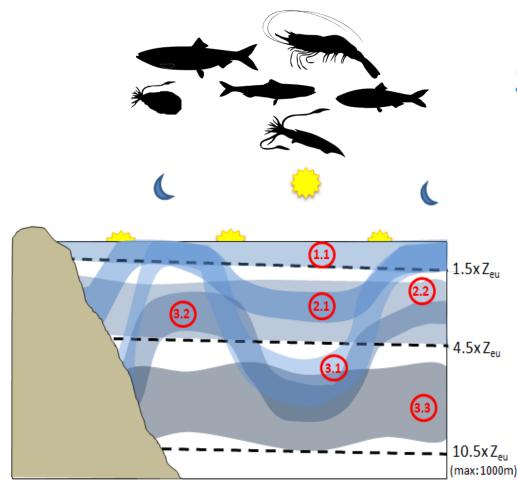
Example of time of development until maturity w.r.t temperature of copepods

Model parameters are estimated from available data


Huntley and Lopez, 1992; Conchon, 2016

$$\partial_t N + \partial_a N = -\operatorname{div}(\mathbf{v}N) + \nabla(D\nabla N) + S$$

 $N(a, t_0) = N_0(a)$


Equation for the adults

$$\partial_t N = -\operatorname{div}(\mathbf{v}N) + \nabla(D\nabla N) - MN + P(\mathbf{T})$$

 $N(t_0) = N_0$

NPP

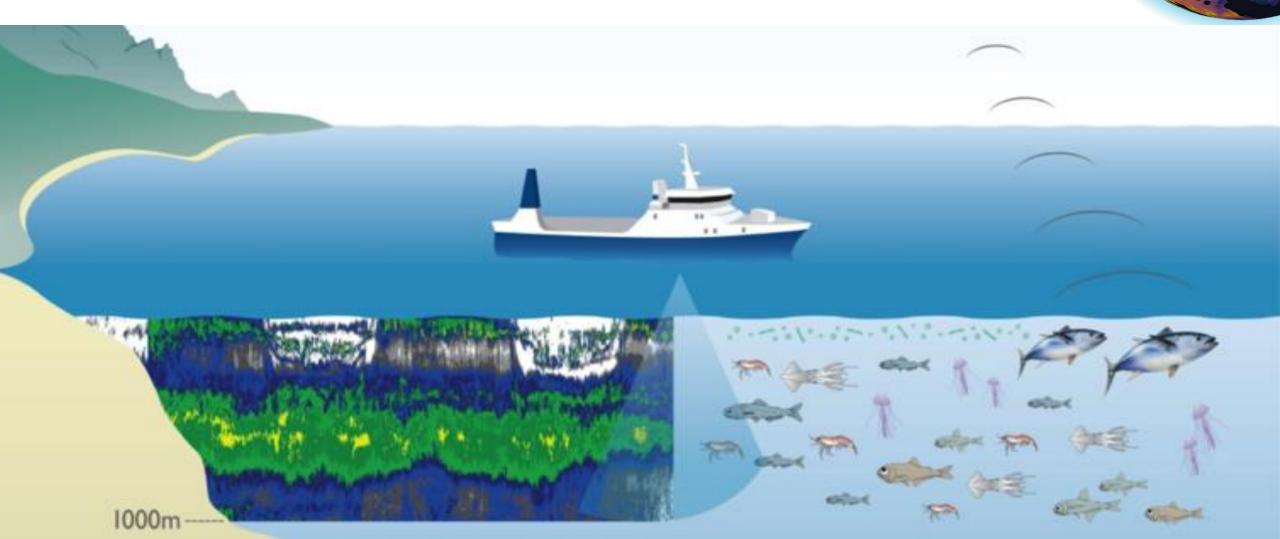
Lehodey et al. 1998; Fish. Oceanog.; 2010, Progr. Oceanog.; 2015, ICES J Mar Sci;

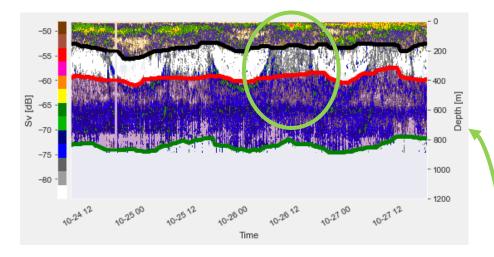
Pelagic vertical layers are dynamically defined from euphotic depth (Zeu)

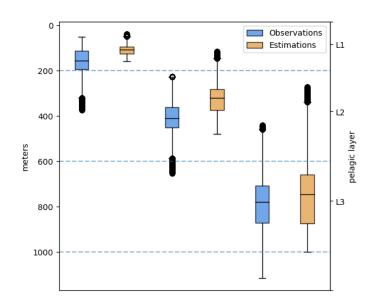
Modeling framework for zooplankton and micronekton

- Water column is simplified into 3 pelagic layers over which forcings (current, temperature) are averaged
- Micronekton is described by six functional groups according to their diel vertical migration behaviour
- Zooplankton is described by a single functional group inhabiting the epipelagic layer
- By their dial migration, micronekton participates to the carbon export

SEAPODYM low and mid trophic level model Lehodey et al, 2001, 2008, 2010; Senina et al, 2008, 2018, 2020a, 2020b

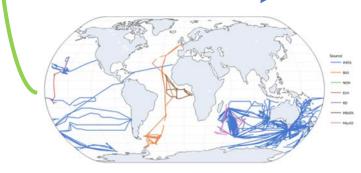

 Image: Second system
 Image: Second system

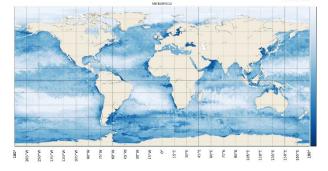

 Difference
 2021 Unifed: Millions Decade


 Commission
 2021 of Ocean Science

 Commission
 2030 for Sustainable Development

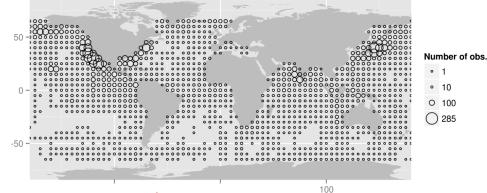
Validation

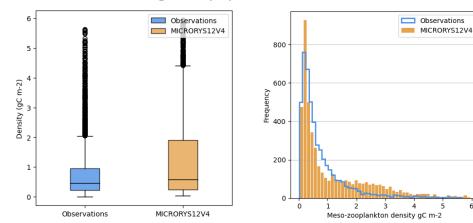




Validation: pelagic layers estimation

- Pelagic layers bottom depth estimated from euphotic depth
- Compared to those estimated from acoustic transects




Validation ZOOPLANKTON

We use the COPEPOD database to

compare modelled and observed zooplankton distribution

www.st.nmfs.noaa.gov/copepod

Validation MICRONEKTON

Total biomass of micronekton is compared estimation found in literature

Estimate	Reference	Method
0.8 Gt	Gjøsæter and Kawaguchi (1980)	Ocean trawl data
11 to 15 Gt (40°N-40°S)	Irigoien et al. (2014)	Acoustics
< 1.4 Gt	Jennings and Collingridge (2015)	Macroecological model
2.4 Gt (40°N-40°S)	Anderson et al. (2019)	Food-web model
1.8 to 16.0 Gt (70°N -70°S)	Proud et. al. (2018)	Acoustics
[2.23;2.54] with mean 2.44 Gt (70°N – 70°S)	MICRORYS12V5	Macroecological model

Sparse observations also exist at regional level

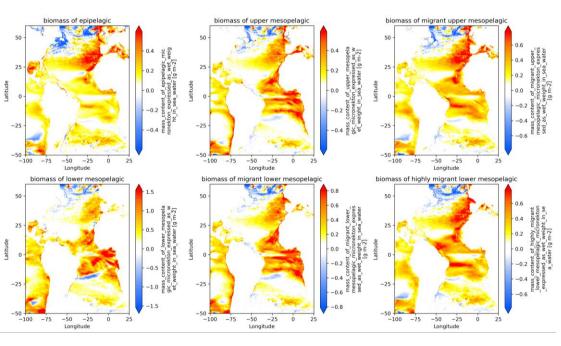
Table 7: Estimates of local mesopelagic fish biomass.

Region Period	Reference	Sampling	Method	Range of biomass (m ⁻²)	Correcti on (gWW m ⁻²)	Model average (gWW m ⁻²)
California Current 2010-2012	Davison et al (2015)	35°N-30°N; 124°W- 118°W	Acoustic model (18 and 38 kHz) with trawling Mesopelagic fish	25– 37 gWW	12-28 ⁽¹⁾	13.2 Average sum of all 5 mesopelagic groups
Northeast	Ariza et al	28°31'N	Trawling	0.2 +0.06		2 74

For more details see

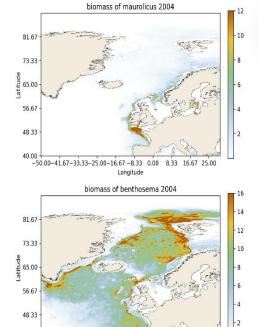
https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-033.pdf

Applications to science and society



MISSION ATLANTIC – Studying the impact of climate change on distribution and biomass of micronekton

Micronekton biomass mean anomalies (historical – projected)


Red area: predicted decreasing biomass Blue area: predicted increasing biomass

MEESO - Could mesopelagic fisheries be sustainable?

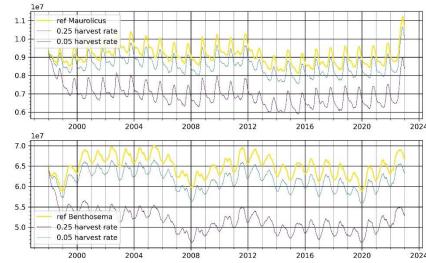
Two species of mesopelagic fish

Credit: Svanhildur Egilsdóttir, Icelandic Marine and Freshwater Research Institute

-50.00-41.67-33.33-25.00-16.67-8.33 0.00 8.33 16.67 25.00

40.00

Simulating fishing scenarios


Time serie of the biomass of Maurolicus (top) and Benthosema (bottom) in mt

1.5x Z.

4.5xZ.

10.5x Z_{er} (max: 1000

(2.2)

Spawning habitats of Antartic krill

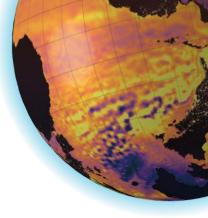
Muséum national d'Histoire Naturelle (Paris)

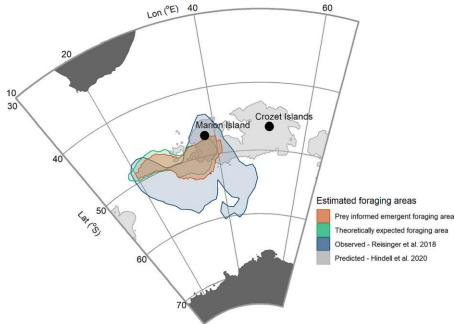
habitat

Mechanistic model for Antarctic krill **spawning habitat uses** food constraints on predation on egg survival by micronekton

(a) Winter Spring Summer 0.33 0.30 0.27 0.23 Seasonal distribution (b) Duration of high quality spawning habitat 1-3 weeks 4-11 weeks 12+ weeks Mean annual duration of high 7.01 quality spawning og(krill density + 1) 2.83 0.07

Green et al ; 2021. Geophysical Research Letters

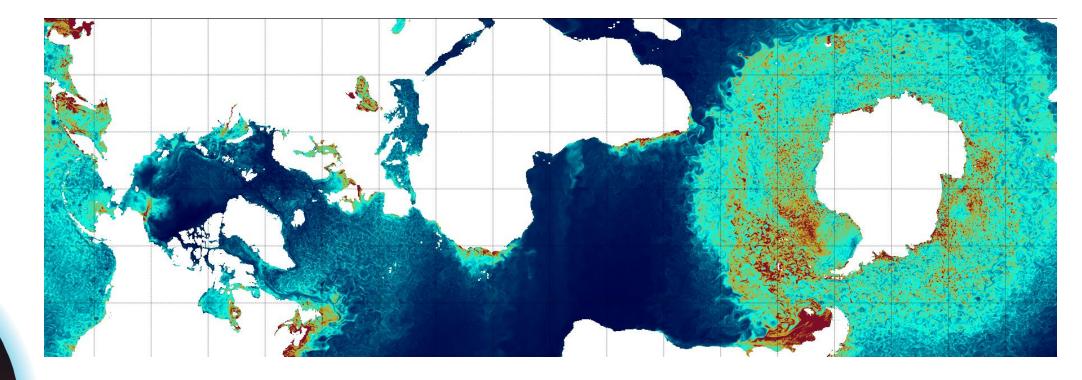

Predator foraging success based on micronekton distribution



 Location of preyinformed emergent (orange) and theoretically expected (green) foraging areas

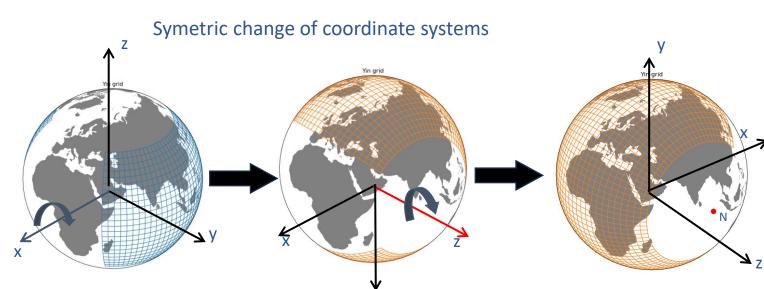
Modelled mid-trophic prey biomass may be useful to predict predator foraging success

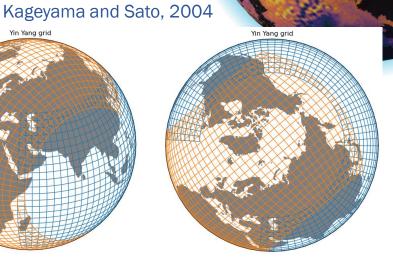
Emergent foraging areas occur within observed foraging distributions of macaroni penguins

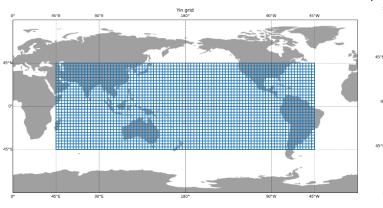


Green et. al. 2023, Ecological Indicators

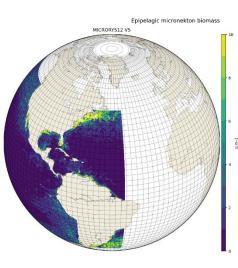
What's new? • The Yin-Yang Overset Grid Assembly framework

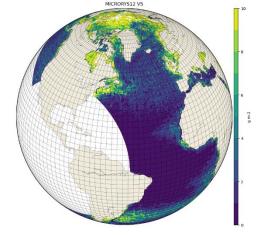





unesco 2021 United Nations Decade of Ocean Science 2030 for Sustainable Development

The Yin-Yang Overset Grid Assembly (YYOGA)


Yin Yang grid



Lat/Lon classical coordinate system related to the regular Yin grid : the dark coordinate system

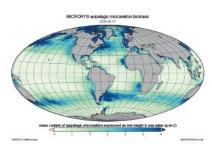
The sunny coordinate system related to the regular Yang grid in that system

Epipelagic micronekton biomas

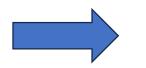
Epipelagic micronekton 2003/03/03

How to get LMTL reanalysis ? The Copernicus Marine Service Low and Mid Trophic product

Zooplankton and micronekton reanalysis, a daily 1/12° CMEMS product


MICRORYS is produced at Collecte Localisation Satellite (CLS) for Copernicus Marine Environment Monitoring Service.

It is proposed for end users involved in marine resources and ocean ecosystem management and conservation. It is based on the Low and mid-trophic level module of the **Spatial Ecosystem And Population Dynamics Model** (SEAPODYM).


It contains time series of meso-zooplankton and 6 functional groups of micronekton biomass.

It can be downloaded from the CMEMS portfolio :

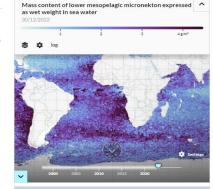
Global ocean low and mid trophic levels biomass content hindcast

📽 🕁 🖽 🛓

Home > Marine Data Store > Product

i	Description
Ŷ	Notifications
*	Data access
	Contact
DO	CUMENTATION
	User Manual
	Quality Information Document
8	Synthesis Quality Overview
ð	Licence
	How to cite

The Low and Mid-Trophic Levels (LMTL) reanalysis for global ocean is produced at CLS on behalf of Global Ocean Marine Forecasting Center. It provides 2D fields of biomass content of zooplankton and six functional groups of micronekton. It uses the LMTL component of SEAPODYM dynamical population model (http://www.seapodym.eu/). No data assimilation has been done. This product also contains forcing data: net primary production, euphotic depth, depth of each pelagic layers zooplankton and micronekton inhabit, average temperature and currents over pelagic layers.


Forcings sources:

Vertical coverage

Overview

 Ocean currents and temperature (CMEMS multiyear product)

 Net Primary Production computed from chlorophyll a, Sea Surface Temperature and Photosynthetically Active Radiation observations (chlorophyll from CMEMS multiyear product, SST from NOAA NCEI AVHRR-only Reynolds, PAR from INTERIM) and relaxed by model outputs at high latitudes (CMEMS biogeochemistry multiyear product)

Explore in MyOcean Pro

https://data.marine.copernicus.eu/product /GLOBAL_MULTIYEAR_BGC_001_033

MICRORYS development plan

- Less diffusive numerical scheme
- Using regional products for Net Primary Productivity

• New estimation of pelagic layer depth

• Improve parametrisation

References

Lehodey, P., Murtugudde, R., & Senina, I. (2010). Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups. Progress in Oceanography, 84(1–2), 69–84. <u>https://doi.org/10.1016/j.pocean.2009.09.008</u>

Green, D. B., Bestley, S., Corney, S. P., Trebilco, R., Lehodey, P., & Hindell, M. A. (2021). Modeling Antarctic krill circumpolar spawning habitat quality to identify regions with potential to support high larval production. *Geophysical Research Letters*, 48, e2020GL091206. https://doi.org/10.1029/2020GL091206

David B. Green, Sophie Bestley, Stuart P. Corney, Rowan Trebilco, Azwianewi B. Makhado, Patrick Lehodey, Anna Conchon, Olivier Titaud, Mark A. Hindell, Modelled prey fields predict marine predator foraging success, Ecological Indicators, Volume 147,(2023), 109943, ISSN 1470-160X,

https://doi.org/10.1016/j.ecolind.2023.109943.

Akira Kageyama and Tetsuya Sato, (2004), "Yin-Yang grid": An overset grid in spherical geometry, <u>Geochemistry Geophysics Geosystems</u>, Volume 5, Number 9, doi:10.1029/2004GC000734

Quality Information Document , Global Monitoring and Forecasting Production Centre GLOBAL_MULTIYEAR_BGC_001_033 (2024)

https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-033.pdf

2021 United Nations Decade 2030 of Ocean Science for Sustainable Develop

ADVANCING OCEAN PREDICTION SCIENCE FOR SOCIETAL BENEFITS

Thank you!

EU

@ceanobs

INTERNATIONAL OCEAN GOVERNANCE

