

Impact of high-resolution atmospheric and riverine boundary conditions on Mediterranean Sea biogeochemical dynamics

<u>Valeria Di Biagio¹</u>, Marco Reale¹, Ehsan Sadighrad², Emanuela Clementi², Giorgio Bolzon¹, Laura Feudale¹, Stefano Salon¹, Gianpiero Cossarini¹
 1 - National Institute of Oceanography and Applied Geophysics – OGS, Italy
 2 - Euro-Mediterranean Center on Climate Change Foundation – CMCC, Italy

Overview

- Coastal marine ecosystems: spatial and temporal variability
 - Copernicus EU BCs for Mediterranean Sea BGC: EFAS and CAMS
 - Setup of simulations implementing high resolution BCs
 - Preliminary results
 - Conclusions and future work

Variability of coastal marine ecosystems: Predict northern Adriatic Sea case study

How can we reproduce such a high variability?

• BGC Med-MFC products of Copernicus EU Marine Service: 1/24° (ca. 4 km) horizontal resolution

• State-of-the-art coupled system:

- Transport model OGSTM v4.0;
- BGC model BFM v5;

 - 3DVAR-BIO v3.4: surf chl from OCTAC + chl, nitrate and oxy profiles from BGC-Argo floats + convolutional NN for nitrate from Argo and BGC-Argo floats;

including nutrients, dissolved gases, carbonatic system and plankton

- **Coastal dynamics** of marine ecosystems also require to:
 - Include **benthos** (under development in NECCTON project);
 - Solve coastal processes at high spatio-temporal resolution

Copernicus EU EFAS river discharges

HIGH FREQUENCY DYNAMICS

- 6-hourly river discharges for historical and forecast products;
- EFAS v5: LISFLOOD hydrological model forced with gridded observational data of precipitation and temperature (ca. 1.5 km resolution), with outputs available since 1992;
- Fig: **example of daily discharge** of Neretva river in 2019, superimposed to PERSEUS (FP7-287600 project, D4.6) climatological estimate.

Nutrient and carbon loads associated with EFAS river discharges

load = river discharge x conc.

- EFAS daily discharges of 38 rivers flowing into Med Sea;
- **Conc**. from **updated literature**:

1) for each river: conc. = load/discharge

2) for each sub-basin: conc. = mean of the conc. of all rivers in the sub-basin weighted by their discharges

	nwm	tyr	adr+ion	aeg	lev	Nile	Medjerda
Nitrate [gN/m ³]	1,61	2,23	1,74	1,71	2,06	12,88	2,56
Phosfate [gP/m ³]	0,096	0,283	0,060	0,379	0,083	0,492	0,172
DIC [gC/m ³]	30,04	52,96	36,08	34,41	32,23	35 <i>,</i> 33	57,81
POC [gC/m ³]	1,84	1,68	1,52	1,68	1,68	1,68	1,68
DOC [gC/m ³]	1,72	3,24	2,29	2,01	2,01	2,01	2,01
Alkalinity [mol/m ³]	2,87	5,16	3,00	2,62	2,52	2,41	5,73

Brogi et al., 2020; Cozzi & Giani, 2011; Dai et al., 2012; Giani et al., 2023; Gómez-Gutiérrez et al., 2006; Higueras et al., 2014; Kaiser et al., 2004; Ludwig et al., 2009; Malagó et al., 2019; Many et al., 2021; Panagiotopoulos et al., 2012; Pitta et al., 2014; Strobl et al., 2009; Tamše et al., 2015; UNEP/MAP/MED POL, 2003; Van Apeldoorn & Bouwman, 2014; Volf et al., 2013.

2021 United Nations Decade of Ocean Science 2030 for Sustainable Development

Copernicus EU CAMS atmospheric deposition fluxes

SPATIAL AND TEMPORAL PATTERNS

- 12-hourly Global Atmospheric Composition
 Forecasts product at 0.4° horizontal resolution;
- Wet and dry deposition of nitrate, ammonium and dust aerosol since mid-2019 onwards;
- Fig: **example of daily wet deposition** (i.e., both from convective and large-scale precipitation) of fine and coarse **nitrate** particles.

Seasonal atmospheric deposition of nitrogen and phosphorus (1/2)

- CAMS Total DIN includes ammonium and fine/coarse nitrate particles;
- CAMS Total Dust includes all CAMS size classes of dust particles (i.e., 0.03-0.55 um, 0.55-9 um, 9-20 um);
- Total P = 735 ppm of Total Dust (Richon et al., 2018);

We computed «winter» (ONDJFM) and «summer» (AMJJAS) averages of 2020-2022 **CAMS** forecasts of **atmospheric wet+dry deposition fluxes** for Total DIN and Total Dust and estimated Total P.

Seasonal atmospheric deposition of nitrogen and phosphorus (2/2)

We estimated **mean (multiplicative) coefficients of bias correction** by **comparing** available observations and CAMS data averaged **in coastal sub-basins**.

CTRL indicates the climatological values in West/East Med (Ribera D'Alcalà et al., 2003)

Run scheme for new BCs implementation

	BGC river loads	BGC atm. deposition fluxes		
CTRL run	Monthly CLIM (PERSEUS D4.6)	CLIM (OBS, Ribera D'Alcalà et al., 2003): 2 values for N, P		
EFAS run	EFAS daily discharges and updated BGC conc.	as in CTRL run		
E+CA run	as in EFAS run	CAMS fields bias-corrected with OBS: 2 seasons, 16 sub-basins for N, P		

Results: EFAS run validation

 Chl from Copernicus Marine Service OCTAC OCEANCOLOUR_MED_CHL_L3_NRT_OBSERVATIONS_009_040: better reproduction of coastal blooms and high frequency variations in coastal areas (1°x1° boxes around river mouths);

 Match-ups of modelled nutrients and a dedicated in situ dataset (MedBGCins, Di Biagio et al., 2024): improvements in spatial and temporal distributions in the northern Adriatic Sea Italian territorial waters (12 nm)

Results: E+CA run (2019)

- E+CA run shows a generally higher coastal-offshore gradient of npp wrto EFAS run;
- Coastal areas not influenced by rivers (i.e., central-southern Med) display higher npp (ca. 10%);
- Open-sea productivity in Levantine Sea slightly decreased (ca. 1%), due to lower input of Total P in summer (ca. 50%), thus enhancing the zonal gradient across the basin.

Δdeposition Total P [%]								
Cub basin	Ореі	n-sea	Coast (0-200 m)					
Sup-pasin	WIN	SUM	WIN	SUM				
alb	106	79	158	162				
swm	59	76	111	96				
nwm	8	43	81	60				
tyr	15	27	33	53				
adr	90	25	18	47				
aeg	67	9	94	46				
ion	146	6	225	61				
lev	101	-49	182	48				

CTRL Total P: 1.95 $10^{\text{-8}}$ (West Med) and 1.31 $10^{\text{-8}}$ (East Med) mmolP m $^{\text{-2}}$ s $^{\text{-1}}$

Conclusions and future work

- We implemented BGC loads associated to EFAS river daily discharges and CAMS seasonal atmospheric deposition of N, P on Med sub-basins in the Copernicus Med-MFC BGC model system;
 - Preliminary **results** obtained from 1-year runs showed **improvements** in the simulation of phytoplankton **blooms** associated with high riverine discharges, and enhanced coastal-offshore and zonal **gradients of productivity** in the basin;
 - We **plan** to estimate **P bioavailability** for marine organisms (by comparing longer simulations with the recently delivered Copernicus Marine EU product of npp) and to investigate the relationship between river discharge and nutrient and carbon concentrations (by using AI methods, e.g., MLP) in presence of observational datasets (e.g., for Po river).

2021 United Nations Decade 2030 of Ocean Science for Sustainable Develop

ADVANCING OCEAN PREDICTION SCIENCE FOR SOCIETAL BENEFITS

Thank you!

EU

@ceanobs

INTERNATIONAL OCEAN GOVERNANCE

