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Data scientists activity
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Source: How data scientists spend their time (Image courtesy Anaconda “2020 State of Data Science: Moving From Hype Toward Maturity.”)
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The Refinery takes care of all the heavy lifting

Core Activity

66% of time

Reduced IT support

High autonomy of Data Scientists
Reduced number of applications
Reduced IT costs
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Synergies between data experts enables to access new businesses
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Models Data Refinery

Power
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Data Refinery
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Data mesh: one step
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Horizontal integration => Data Mesh
Incremental scope growth
Emergent Data Governance Pattern
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Data mesh: not just a slogan
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e Shared and collaborative Data Referential

The O Defined by specialist instead of ITs
. ) ® Business driven architecture

Timeseries N | |

R f e Productivity tool (quantity & quality)
e Inery e Data quality tool

e Data Governance tool
® Machine Learning framework: “game changer”
® Multi-scale

® Structured data with business driven APlIs



