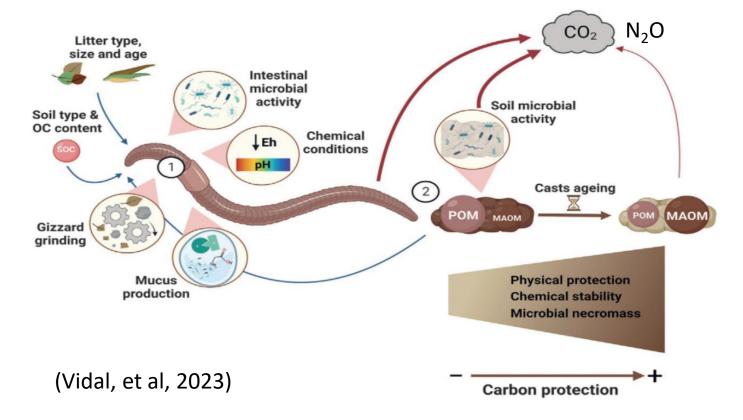


International symposium 24 - 26 January 2024


Land use determines the composition and stability of organic carbon in earthworm casts under tropical conditions

Chao Song ^{a,b}, Nicolas Bottinelli ^{a, c, *}, Tien-Minh Tran, Francisco Ruiz, Gabin Colombini, Yacouba Zi, Pascal Jouquet, Cornelia Rumpel ^{a, *}

- a. IRD, CNRS, Sorbonne Université, Univ Paris Est Creteil, INRAe, Institute of Ecology and Environmental Sciences (iEES-Paris), F-75005, Paris, France
- b. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- c. Department of Soil Sciences, Soils and Fertilizers Research Institute (SFRI), Hanoi, Viet Nam

1 Introduction

- Earthworms-----important drivers of SOC turnover
- However, their critical role in achieving carbon neutrality is still controversial: OC decomposition vs. OC stabilization

1 Introduction

Knowledge gap: the stability of cast OM and its sensitivity to surrounding environment in contrasting land use systems, e.g. **woodland** *vs.* **meadow**

	SK:		
Bulk soil			Ref.
	Root, SOC, Water regimes (Micro)biological activity,		(Lavelle et al., 2022; Sun et al., 2020)
Cast forming	Dif		
← Cast Ageing ←			(Assouline and Mualem, 1997; Li et al., 2019; Yan et al., 2021)
	X		(Kochiieru et al., 2020)

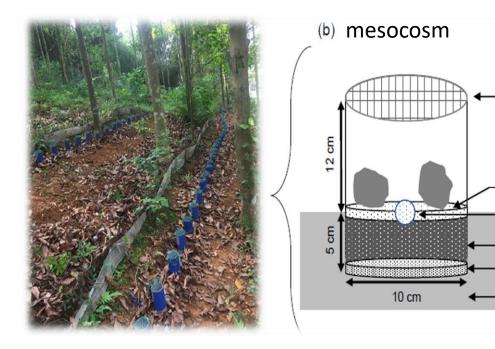
Objective: to assess the effect of land use on

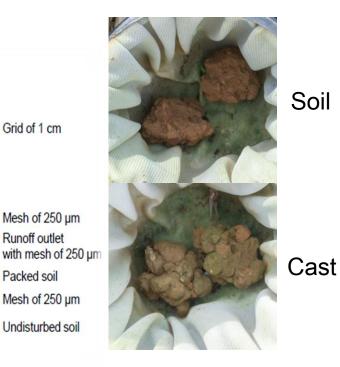
• the dynamics of POM and MAOM occluded in

casts and reference soils during field exposure

• the chemical changes during their ageing.

A 400-day field exposure experiment: in a tropical woodland and meadow of northern Vietnam.


Land use	pH (KCI)	SOC	Clay	Sand
Woodland	3.9	2.5%	50%	17%
Meadow	3.8	3.7%	58%	16%


Soil type: Acrisol Earthworm: Anecic species Amynthas adexilis (A. khami)

Grid of 1 cm

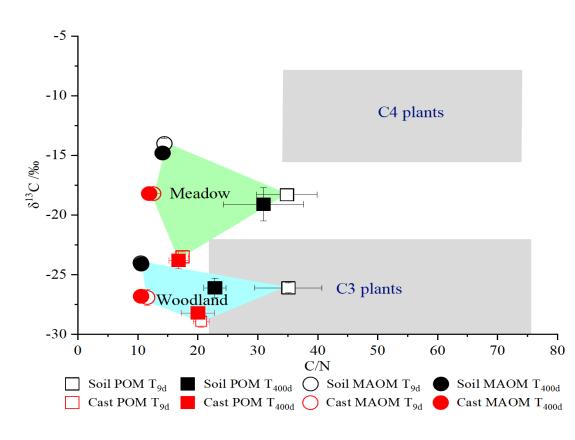
Mesh of 250 µm Runoff outlet

Packed soil Mesh of 250 µm Undisturbed soil

Soil

2 Experiment design and methods

Sampling: 9 days (T_{9d}) and 400 days (T_{400d}) after field exposure


Sample treatment or tests	Parameters	Methods	For studying:
Density fractionation	POM and MAOM	Na-polytungstate with density of 1.6 g cm ⁻³	The stability of cast OM; protecting mechanisms
Elemental composition	C and N content	dry combustion	The quantity of Cast OC, C/N
Carbon isotope	δ ¹³ C	Micromass® Isoprime Isotope ratio mass spectrometer	The feeding material of the earthworms
Chemical composition	Mid-infrared signature	FTIR-ATR	The quality of Cast OC

3.1 Earthworm-induced OC enrichment (*C quantity*)

- Casts C: >90% of MAOM C (vs. 60% for temperate ECs)
- A significant MAOM C enrichment in their casts (1.4~1.8 fold)
- MAOM-C: meadow> in woodland
- Trends with time: decreased in woodland but increased in meadow

3.2 Difference in sources and dynamics of cast POM and MAOM-----C Isotope composition

C isotopic composition is depending on land uses $\delta^{13}C$:

- woodland < meadow</p>
- cast < soil</p>
- MAOM: more positive δ¹³C & lower C/N than POM, indicating both cast fractions have their different sources

POM--primarily from plant materials (including undigested plant debris and fresh roots)MAOM---predominately microbial-derived origin

3.3 The OC functional groups of POM and MAOM determined with FTIR-ATR (*C quality*)

- Significant differences between fractions
- Similar between cast and soil, between T_{9d} and T_{400d}, and between land uses

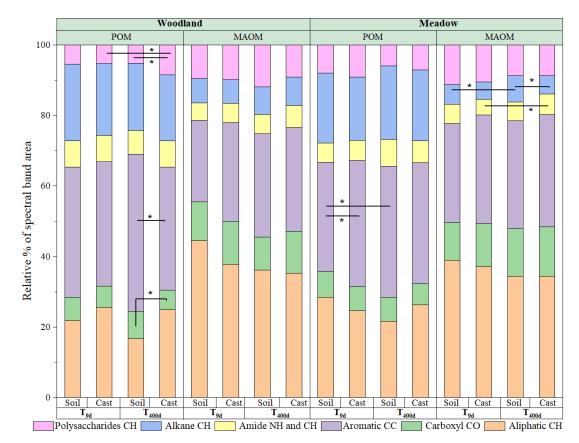
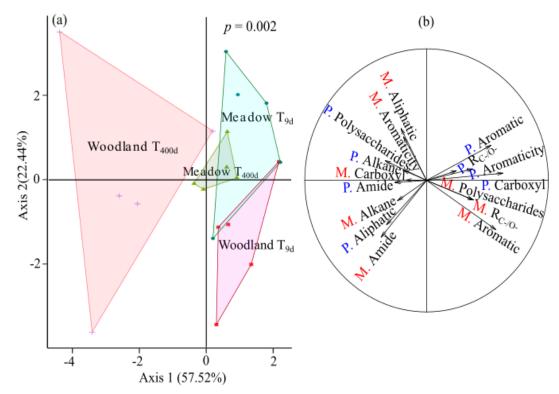
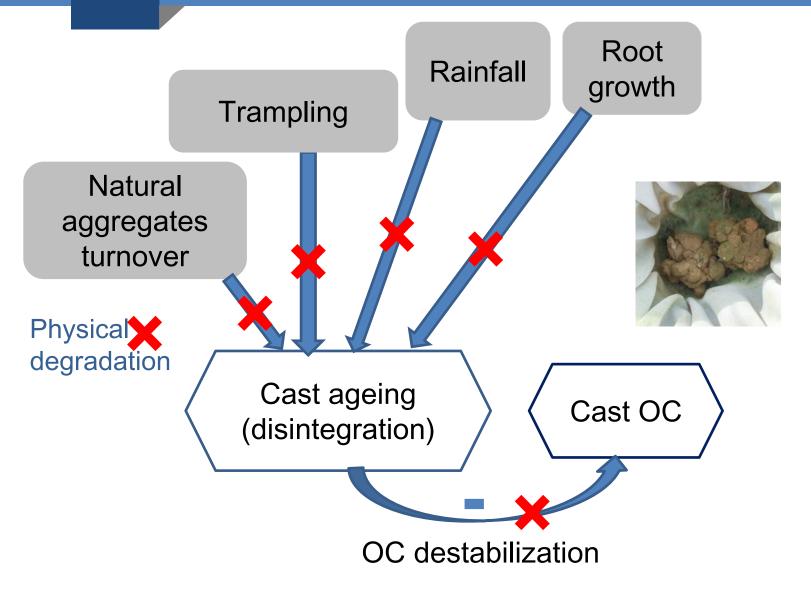
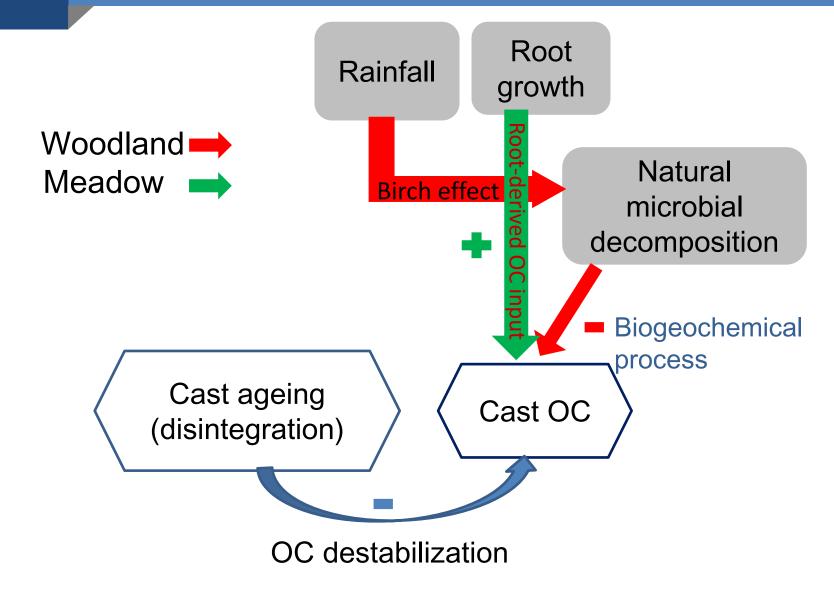



Fig.: Relative proportions (%) of spectral band areas refer to their contribution to the total spectra.


3.3 The OC functional groups of POM and MAOM determined with FTIR-ATR (*C quality*)

- Significant differences between land uses
- temporal changes for the woodland system, but no significant changes for the meadow system



BCA plot for observing specific earthworm-induced variations in functional group content (subtraction)

3.4 Land use dependency of the turnover and fate of cast OC during ageing: Controlling factors

3.4 Land use dependency of the turnover and fate of cast OC during ageing: Controlling factors

3.4 Land use dependency of the turnover and fate of cast OC during ageing: Controlling factors

➢ POM under Meadow at T_{9d}

POM under Meadow at T_{400d}

New root growth

New roots originate from ingested seeds and/or weed plants searching for nutrients (Clause et al., 2015; Decaëns et al., 2003; Forey et al., 2011).

4 Conclusions and future work

Conclusions

- Earthworms induce SOC storage as MAOM rather than occluded POM
- Land use influences composition of earthworm induced SOC in fractions
- Occluded POM in earthworm casts is susceptible to loss on an annual timescale
- Land use influences persistence of earthworm induced SOC in MAOM fractions

Future work

Fe, Al-associated OM in cast

This project was financially supported by CNRS/INSU (VINAWORM) research program under the framework of the EC2CO program. The results contribute to the ANR project U2 Worm (ANR-20-CE01-0015- 01). C. S. was supported by China Scholarship Council (CSC) Grant #202004180033 and Natural Science Foundation of China (NSFC) grant #41877398. We also thank IRD, SFI and M-TROPICS observatory for access to the experimental site.

Any questions?

Thank you for your attention

More details: Song, C., et al., Soil Biology and Biochemistry, 2024

Email: Cornelia Rumpel (cornelia.rumpel@inrae.fr) Nicolas Bottinelli (nicolas.bottinelli@ird.fr) Chao Song (songchao@mail.cgs.gov.cn)