SPIE AR/VR/MR 2022

SCIL Production Solutions Turning your surfaces into functions

SCIL: <u>Marc Verschuuren</u>, Rob Voorkamp TeraNova

February 23, 2022

Contents

- SCIL: our nanoimprint solution
- 300mm platform
- Functional optical materials for nano-photonic applications
- Quality control for nanophotonic applications
- Conclusions

Substrate Conformal Imprint Lithography

The only wafer scale conformal imprint technology

Substrate Conformal Imprint Lithography

The only wafer scale conformal imprint technology

- SCIL Nanoimprint solutions for wafer scale nano-patterning
- Customer specific SCIL processes + ramp up to volume production
- Fully tuned imprint process (resist, stamp)

- Full inorganic imprint resist (NanoGlass[®])
- X-PDMS hard rubber, flexible on the micro-scale
 - Sub-6nm resolution
- Industry leading stamp lifetime: 500+
- Resist options: open to industry available

Variety of patterns, direct replication into NanoGlass resist

Photonic crystal hole patterns

Varying fill fractions SCIL 5.0kV 8.2mm x20,000

Dense high aspect ratio patterns. **Cross section**

SCIL | Confidential

SCIL 5.0kV 6.1mm x50.000

5 22/01/24

Meta-lens wafer scale test patterns – 1D lensing

SCIL nanoimprint tooling, from pilot to fab-integrated

LabSCIL

- Full SCIL functionality incl. overlay
- 100, 150 and 200mm wafers
- (Double side) overlay alignment

AutoSCIL

- Integrated tool: centering, coating, overlay, imprint, post-bake
- 100, 150 and 200mm wafers
- Automatic overlay alignment
- (Double side) overlay alignment

FabSCIL

- Cluster design, freely confinable
- 200 and 300mm wafers
- Automatic overlay alignment
- (Double side) overlay alignment

FabSCIL system - Cluster tool with 2 FabSCIL modules

Multiple configurations possible

Wafer size capability 100,150,200 & 300mm

AutoSCIL platform

- 100, 150, 200mm
- Overlay alignment 1 μ m X,Y, rotation error < 6 μ Rad
- UV cure, thermodynamic cure, RT processing
- Fully automatic processing and overlay alignment
- Front-to-Front alignment and Front-to-Back(side)

FabSCIL platform

- 200mm and 300mm
- Overlay alignment 1 μ m X,Y, rotation error < 5 μ Rad
- UV cure, thermodynamic cure, RT processing
- Fully automatic processing and overlay alignment
- Front-to-Front alignment and Front-to-Back(side)

Overlay results 300mm wafers Front-to-Back alignment Imprint glass wafer, flip, rotate 45°, align to backside, imprint

•	 No offset corrections used in these runs 		X (μm)	Y(μm)	Rz (µRad)
		Average	-1.4	-0.086	3.0
_	200 mars 200 mars this law and high in show shows	Stdev	0.23	0.077	0.45
•	300mm 300mu thickness high index glass				

Overlay results 300mm wafers Front-to-Back alignment Imprint glass wafer, flip, rotate 45°, align to backside, imprint

- No offset corrections used in these runs
- 300mm **800mu** thickness high index glass

	X(µm)	Y(µm)	Rz(µRad)
Average	-1.4	-0.38	2.7
Stdev.	0.37	0.13	0.84

Applications of inorganic functional optical materials

Directly patterning optical materials full range in refractive index

- Saves 9 11 process steps
- All resist types are fully inorganic
 Index range n=1.17 to 2.2
 - Increased slant index with 0.1
 - High index planarizing overcoat material
 - Robust
 - Non-absorbing down to λ ~**360**nm
 - Temperature stable >400°C
- Low shrinkage <10%
- Applications:
 - Augmented Reality
 - Meta-surfaces
 - Flat lenses
- Key figure or merit: nm-reproducible features

Binary gratings in NanoCrystal high index (n=1.96, 100% inorganic)

Slanted grating imprint in NanoGlass T-1250

- Slanted gratings
- Slant angle ~35deg off normal
- Vertical: ~260nm
- Master provided by NIL Technology Denmark

. .

600nm

450nm

Stamp lifetime > 250 imprints proven. Expect to reach same as binary ~500

15 22/01/24

Period:

Slanted grating imprint in NanoCrystal Slant (100% inorganic)

- Slanted gratings
- Slant angle ~35deg off normal
- Vertical: ~260nm
- Master provided by NIL Technology Denmark

Pattern uniformity evaluation Nano photonic applications require absolute size control on the single nm

- Meta-surfaces ± 1nm
- Augmented reality waveguide combiners < 3nm

CD-SEM pattern evaluation in cooperation with CEA / Leti

- Variety of single, dense, ~40nm to microns, optical lithography bias tuning
- Hole arrays 52nm diameter, 120nm deep
- Imprints 1 through 20 of 3^{e} X-PDMS stamp from the master \rightarrow ~1nm variations

Nanoimprint solutions

CD-SEM for slanted or high aspect ratio patterns?

- CD-SEM can only infer a sidewall with known height
 - But lacking LRT, height and for slanted forward and backward angle

A schematic cross-sectional view

* Hitachi

The Instrument: Fourier based scatterometry by TeraNova

- Affordable, compact table-top tool first proto operational and available for testing @ SCIL
- Incident angle scan and simultaneous reflection + diffraction order capture (angle + intensity data)
- Scatterometry tool will be integrated in the AutoSCIL and FabSCIL platforms for in-line QC

TeraNova B.V. – 2021, Confidential <u>TeraNova</u>

Extracting nano-pattern geometry via RCWA simulations 385nm line grating 90°C post imprint cure

Geometrical parameters extracted from RCWA fit to measurements + SEM, AFM, ellipsometry

Sample	1500 rpm	2000 rpm	2500 rpm	3000 rpm
Height (nm)	95	94	90	89
Duty Cycle (%)	43	43	43	43
Residual Layer Thickness (nm)	43	34	27	23
Expected Δ in RLT from flat layers	-	- 10	- 6	- 5

TeraNova B.V. – 2021, Confidential <u>TeraNova</u>

SCIL | Confidential

Batch in batch repro – AutoSCIL tool 150mm Si wafers

- Imprinted 2 batches of 25 wafers one week apart
- NanoGlass T-1100
- 150°C post bake hot-plate
- In 2nd run, first 2 wafers ran different process, then switched to process of batch 1
- From tool gage R&R, crosse checked with AFM, SEM. The dotted line corresponds to ~ 1nm over variation in RLT, height, width

Results compared to average of slots 7 - 25 per run

TeraNova

TeraNova B.V. – 2021, Confidential

Batch to batch repro

- Imprinted 2 batches of 25 wafers one week apart
- NanoGlass T-1100
- 150°C post bake hot-plate
- In 2nd run, first 2 wafers ran different process, then switched to process of batch 1
- From tool gage R&R, crosse checked with AFM, SEM. The dotted line corresponds to ~ 1nm over variation in RLT, height, width
- Batch to batch variation is < 1nm

Results compared to average of slots 7 - 25 of the OTHER run

TeraNova B.V. – 2021, Confidential TeraNova

Parameter extraction via RCW simulations

Batch 2 comparison - process change

Parameter	Sample 2	Sample 17
Height (nm)	85	85
RLT (nm)	44	40
Alpha (deg)	6	6
DC	0.42	0.42
Pitch (nm)	385	385
n resist	1.45	1.45

TeraNova B.V. – 2021, Confidential TeraNova

10

20

30 40

Conclusions

- SCIL provides NIL based high volume production solutions up to 300mm
- Cost effective solution due to optimized combination of tool, process and materials
- Direct replication of complex sub-micron patterns in inorganic optical materials is key enabler for nano-photonics – from low to high index
- Fast inspection that provides 3D geometry information is required for (in-line) QC
- We work with customers from: proof of concept to pilot-volumes and transfer to high volume production

SCIL booth: 210

www.scil-nano.com marc.verschuuren@philips.com