
Security
Whitepaper

of heylogin GmbH, Sophienstraße 40, 38118 Braunschweig
for the product heylogin

Date: 2022-04-06
Version: 1.4

heylogin GmbH | heylogin.com

Table of Contents

1 | Introduction...3

1.1 Security and Usability of Master Passwords.................................3

1.2 Swipe to Login instead of Master Password.................................5

2 | Fundamentals..6

2.1 Cryptographic Algorithms and Key Notation.................................6

2.2 Architecture...7

3 | How Personal Logins Are Secured..8

3.1 The Smartphone as an Authenticator..8

3.2 Saving and Reading Logins..10

3.3 Pairing Another Device...11

3.4 Locking and Unlocking a Device..13

3.5 Account Recovery...14

4 | Summary...15

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 2 | 16

Security

Whitepaper

1 | Introduction

Remembering only one password, the Master Password instead of many is the main
selling point of traditional password managers. With heylogin, a Master Password is
no longer necessary. Instead, it uses the secure element present in modern
smartphones and replaces the Master Password with Swipe to Login. Secure elements
are security chips that protect secrets against unauthorized access and brute force
attacks. When authorization is required, the user is asked to swipe on their
smartphone instead of entering a Master Password. This dependency also makes
heylogin two-factor secure (2FA) by design because login requests have to be
authorized on a second device: the smartphone. While heylogin’s Swipe to Login
technique feels like a login method, it actually uses end-to-end encryption from the
smartphone to the browser to make passwords available.

1.1 Security and Usability of Master Passwords

Legacy password managers require users to remember and regularly enter a Master
Password. This Master Password is used to encrypt and decrypt all stored private
information, such as usernames and passwords. A Master Password must be
complex and kept private, as it is the single secret to all information. There are several
problems associated with this cryptographic design:

• 1-factor Security: While many password managers allow the setup of another
factor, such as TOTP, U2F or FIDO2/WebAuthn, this is not done by most users.
Furthermore, this second factor is not used for end-to-end encryption, but only an
additional authentication via the provider's infrastructure. Exceptions are password
managers with native smartcards that implement actual encryption using OpenPGP,
PIV or FIDO2 hmac-secret.

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 3 | 16

Security

Whitepaper

• Offline Attacks: The Master Password, as a factor of knowledge, cannot be
protected against brute force attacks as soon as they are performed offline. When a
password vault is stolen or a data leak occurs at the large commercial password
managers, the encrypted vaults can be attacked “offline”, i.e., there is no interactive
protocol involved that rate-limits retries. A brute force attack or dictionary attack is
only slowed down by the vault's Password-based Key Derivation Function (PBKDF).
However, this never achieves the protection of a Hardware Security Module (HSM)
since PBKDFs only slow down the brute force attack, but can never limit the number
of tries like a HSM could.

• Usability: Studies show that not all users are able to generate and remember a
sufficiently secure Master Password. In a study by Pearman et al [1], participants
reused a different password as their Master Password or had it generated on a
website. The participants involved had no technological training. So, especially for
people who are not IT experts, using a password manager with a Master Password
can actually reduce their security to a single point of failure.

• Time Required: Depending on the implementation and the security policies used,
the Master Password must be retyped regularly by the user in order to temporarily
decrypt the vault. We assume about 3 hours / month / user, which are spent for the
regular typing of the Master Password and the password management.

The use of a legacy password manager is thus mainly associated with annoyances
that go beyond the normal conflict between security and user-friendliness. Existing
solutions cannot easily change their security architecture because basic user flows
and user expectations go hand in hand with the Master Password.

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 4 | 16

Security

Whitepaper

1.2 Swipe to Login instead of Master Password

heylogin implements a cryptographic architecture that is two-factor-secure by
design, protects against brute force attacks and requires less time in daily usage. As
shown in Figure 1, one swipe on the user’s phone decrypts the passwords and allows
automatic login on websites in the user’s browser.

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 5 | 16

Security

Whitepaper

Figure 1: heylogin works with all websites in the user’s browser. In this example, instead of
typing in passwords for Twitter or PayPal, the user clicks the heylogin button, gets a
notification on the phone and confirms the login using the Swipe to Login technology.

2 | Fundamentals

2.1 Cryptographic Algorithms and Key Notation

This document presents the architecture and algorithms used by heylogin to store
data. For information on the infrastructure and availability, please take a look at the
Compliance Whitepaper [2]. heylogin only uses state-of-the-art cryptography
algorithms. On all platforms we utilize libraries that implement the NaCl interface and
therefore use Curve25519 [3] and the XSalsa20 [4] stream cipher with Poly1305 [5]
authentication for asymmetric cryptography and the XSalsa20 stream cipher with
Poly1305 authentication for symmetric cryptography. At time of writing, the library
used on all platforms is TweetNaCl.js [6]. As it does not implement Argon2 [7], which
the original TweetNaCl does, we use a separate implementation of Argon2 when
needed.

Within heylogin, keys are named to indicate whether they are allowed to be saved on
the device or not. In this document we will use the term storable to indicate that a key
is allowed to be stored on the device and the term high security to indicate that the key
may only exist in volatile memory and must not be persisted. Such keys must be
derived or acquired before using them. Asymmetric key pairs consist of two keys, the

secret and public key, which will use the following notation: usagetype
prefix where prefix is

either s (storable) or hs (high security), type is either sec (secret) or pub (public) and
usage is a unique name indicating what this key is used for. Symmetric keys use a
similar notation, just without the key type: usageprefix .

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 6 | 16

Security

Whitepaper

2.2 Architecture

The architecture of heylogin consists of two parts, the server side which stores
encrypted customer data and the client applications talking to the server side. There
are two kinds of clients available, the Authenticator, which is the mobile app, and the
App, which are the web app and the extension.

Figure 2 shows how the parts communicate with each other. All client applications
talk to the server side using TLS 1.3, depicted by solid arrows. The web app and
extension can exchange data on the local machine directly inside the browser
depicted by a dashed arrow. The authenticator cannot talk directly to the web app or
extension and therefore the server side acts as a proxy. All messages between the
apps and the authenticator are always end-to-end encrypted and sent over the TLS
connections, the virtual communication channels are depicted as dotted arrows.

On the server side, all user data is saved encrypted with keys that are only available
on the user’s devices, see Section 3. The only accessible data is the user’s email
address and structural metadata, such as which data belongs to which user. The apps
never send unencrypted user data to the server-side. The heylogin server-side merely
act as data storage and communication proxy.

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 7 | 16

Security

Whitepaper

Figure 2: Overview of the heylogin architecture. Solid arrows indicate TLS-encrypted
connections over the internet, dotted arrows indicate E2E-encrypted connections inside the
TLS-encrypted connections and dashed arrows indicate a local, unencrypted connection on the
same device.

heylogin ServerAuthenticator

Web App

Extension

3 | How Personal Logins Are Secured

3.1 The Smartphone as an Authenticator

One of the core concepts of heylogin is the Authenticator. With heylogin, every user
has at least one authenticator: their mobile phone. Modern mobile phones and their
operating systems allow applications to store secrets and sensitive data securely by
offering support for cryptographic operations with key material only available to the
hardware. This hardware is known as a secure element and can encrypt and decrypt
user data on request. The heylogin app utilizes the secure element to create an
authenticator in the following way:

First, a random 32-byte seed is generated on the mobile phone. This seed is then
given to the secure element to be encrypted and the encrypted form is saved on the
device. The seed is then used to derive the five key pairs

All public keys are saved on the server side. To derive all key pairs except the login
key pair, a unique salt is also randomly generated and saved on the server side, see
Figure 3. The login key pair is used for authenticating this authenticator against the
server. The id key pair represents the identity of this authenticator. Both vaultKeyEnc
key pairs are used to encrypt two types of vault keys which then encrypt actual data,

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 8 | 16

Security

Whitepaper

(loginsec
hs ,loginpub

hs
) , (id sec

hs , id pub
hs

), (vaultKeyEnc sec
hs , vaultKeyEnc pub

hs
),

(vaultKeyEncsec
s , vaultKeyEnc pub

s
) and (sigsec

s , sigpub
s

).

Figure 3: Key generation for authenticators

generate random
Seed

generate random
Salt

de
rive

s

sig
n

s

loginsec
hs loginpub

hs

idpub
hs

sig pub
s

vaultKeyEncpub
s

vaultKeyEncpub
hs

idsec
hs

vaultKeyEncsec
hs

vaultKeyEncsec
s

sigsec
s

see Section 2.2. The vaultKeyEnc pub
hs , vaultKeyEnc pub

s , sigpub
s public keys are signed using

idsec
hs and the signatures are saved on the server in addition to the public keys. This

prevents the server from changing any of the public keys without also changing id pub
hs

and therefore changing the identity of the authenticator.

The user now has a so called Push Authenticator. It is called a push authenticator as
it can receive push notifications that prompt the user to unlock secrets for a client. To
prevent loosing access to heylogin should the push authenticator be unavailable, e.g.
because the mobile phone is broken, a Backup Authenticator is generated in the same
way, except that its seed is not encrypted by the secure element. It is stored
unencrypted inside the cloud backup of the app. On both iOS [8] and Android [9] the
cloud backup is encrypted which makes this a safe way to store the seed.

Another type of recovery exists using the backup code displayed inside the app.
This code represents an optional third authenticator that is created when the code is
first retrieved. As shown in Figure Figure 4, to create this authenticator, the 24-byte
random backup code is generated first alongside a 32-byte salt. Then, the seed is
generated by password hashing the backup code using Argon2 [7]. At the time of
writing, the used Argon2 parameters are: 6 iterations with a parallelism of 8 and a
memory cost of 48⋅1024=49152 KiB .

The salt is saved on the server side and is retrieved when needed. For more
information on the account recovery, please see Section 2.5.

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 9 | 16

Security

Whitepaper

Figure 4: Generation of backup code

24-byte Recovery Code

32-byte Salt

generate random

generate random
argon2 32-byte Recovery Seed

3.2 Saving and Reading Logins

Figure Figure 5 depicts the architecture for saving and reading logins. Logins are
saved inside a Vault as part of a Commit. A login consists of at least one associated
website, a username or email address and a password. The website and username
can be empty but a password must be set. Additionally, a login can contain custom
fields with a freely choosable name and value. Optionally, the value of a custom field
can be marked as protected which causes it to be treated as if it were a password.
Also optionally, a TOTP secret can be saved which is also treated as if it were a
password.

Each user has at least two vaults, their Personal Vault (in the web called My Logins)
which stores their personal logins and a Meta Vault which stores metadata such as the
names of Sessions. Each vault consist of a series of Commits that, when applied in
order, represent the current state of the vault. Commits are not cryptographically linked
but are ordered by their creation time on the server side. Commits are encrypted with a

symmetric key called vaultKey s . Additionally, sensitive parts inside the commit, i.e.,
the password, custom fields marked as protected and the TOTP secret, are

additionally encrypted with another symmetric key called vaultKeyhs .

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 10 | 16

Security

Whitepaper

Mobile Device

encrypted w
ith

public keys

generates

seed

saved

public keys

secret keys

Push Authenticator

generates

seed

saved
public keys

secret keys

Backup Authenticator

public keys

encrypt

encrypted

encrypted

Lock for Push
Authenticator

encrypted w
ith encrypt

encrypted

encrypted

Lock for Backup
Authenticator

Commit 1

Commit 2

Commit 3

Vault

Server Side

vaultKey s

vaultKey s

vaultKeyhs

vaultKeyhs

id
pub
hs

id
pub
hs

Figure 5: Overview for saving and reading logins. Logins are stored inside commits which are
encrypted with the symmetric vault keys. These keys are encrypted with the public key of an
authenticator to form a Lock.

The vaultKey s and vaultKeyhs are stored encrypted on the server side inside a Lock.

A Lock binds the vaultKey s and vaultKey hs to a specific authenticator. The vaultKey s is

encrypted with vaultKeyEnc pub
s and the vaultKeyhs is encrypted with vaultKeyEnc pub

hs of

the respective authenticator. For a personal vault, up to three locks exist that hold the

encrypted vaultKey s and vaultKey hs for the push, backup and recovery authenticator.

3.3 Pairing Another Device

A client can be in one of three states with different key material available to it as
seen in Figure 6.

After the mobile device has been set up, other devices, such as a browser, here
called client, can be paired. Pairing is done by navigating to heylogin.app and then
scanning the displayed QR code with the mobile device. The QR code embeds a public
key of an ephemeral key pair (ephemeralsec , ephemeralpub) which is generated by the

client. The SHA256 hash of that public key is send to the server side which proxies the
reply of the mobile device to the web app. The content of the QR code is the URL

Should the URL be scanned by another QR code scanner app that is not the heylogin
mobile app and subsequently be opened in a web browser, then the server will simply
issue a redirect to the web app. Furthermore, the heylogin mobile app registers itself
as a handler for the https://heylogin.app/qr/ URL so that it is opened automatically. To

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 11 | 16

Security

Whitepaper

Paired + Locked Paired + UnlockedNot paired

o
n

ly
 in

 m
e

m
o

ry

session token session token

ephemeralsec
s ephemeral pub

s sessionsec
s session pub

s sessionsec
s session pub

s

loginpub
hs

idpub
hs

sig pub
s

vaultKeyEncpub
s

vaultKeyEncpub
hs

sigsec
s

vaultKeyEnc sec
s

loginpub
hs

idpub
hs

sig pub
s

vaultKeyEncpub
s

vaultKeyEncpub
hs

sigsec
s

vaultKeyEncsec
s

vaultKeyEnc sec
hs

id sec
hs

loginsec
hs

Figure 6: Different states of a client device and which keys are available to it.

"https://heylogin.app/qr/#"∥ Base64(ephemeralpub)

prevent a malicious actor from pairing a new session by simply invoking the heylogin
app QR code URL handler, the app forces the user to scan the QR code again and
ignores the passed URL.

Upon scanning the QR code with the heylogin mobile app, the mobile device
encrypts its push authenticator seed to that public key, sends it to the server side
which relays it to the client who then decrypts the seed to generate the login key pair.
With this key pair, the client authenticates itself against the server side and obtains the
salt to generate all other authenticator key pairs. It now generates a session key pair

(sessionsec
s , sessionpub

s
) , signs session pub

s with the authenticator identity secret key idsec
hs

and saves session pub
s and the signature inside the personal meta vault. This

mechanism creates a Session on the server side for this client. The authenticator seed

is also encrypted with the session pub
s and saved alongside the session so that the client

can retrieve it again later.

Each session also contains a JSON Web Token (JWT) generated by the server side
that authorizes this client to send requests to the server side. This is also true for push
authenticators which also have a session. All sessions except the own are displayed in
the mobile app and can be deleted if needed. When a session is deleted, the respective
token on the server side is deleted and the client can no longer perform a request to
the server side. A client that gets its request rejected due to a deleted session will
delete all key material it has.

So far, a client has been described as being the heylogin.app web app. The heylogin
extension installed inside a browser with a paired web app will communicate with the
web app and use the same session credentials and therefore will be identified as the
same device as the web app. The extension will also save the session credentials to
be able to restore the session for the web app even if the browser cookies and local
storage is deleted.

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 12 | 16

Security

Whitepaper

3.4 Locking and Unlocking a Device

A device being locked or unlocked is an implicit state. The presence of an encrypted
authenticator seed inside a session means that the session is unlocked. If the
encrypted seed is not present, the session is locked. The mobile device can add and
remove the encrypted seed to and from sessions at will. These are the toggles inside
the mobile app beside each session. A client never persists the seed and only holds it
in memory to derive the keys as shown in Section 2.1.

An unlocked session might persist any keypair that is storable. In practice, these are

the (vaultKeyEnc sec
s , vaultKeyEnc pub

s
) and (sig sec

s , sigpub
s

) keypairs. This allows a locked

client to decrypt the encrypted vaultKey s which in turn allows it to parse logins but not
their password, private custom fields or the TOTP secret, see Figure 7. This property is
used by the extension to show the overlay on websites with known logins. As soon as
the user clicks on a specific login to log into the website, the extension will request an
unlock so it can obtain the seed, derive all other high security keypairs, delete the local
copy of the seed, decrypt the encrypted vaultKeyhs and then decrypt the password to
finish the login.

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 13 | 16

Security

Whitepaper

Figure 7: In the paired, but locked state, username, website and other custom fields are
available. Passwords, TOTP secrets and other protected custom fields are only available in the
unlocked state.

encrypts

encrypts

encrypts

encrypts

username/email

website

password

TOTP secret

encrypted

encrypted

encrypted Login

encrypted

only available when
unlocked

custom fields

protected
custom fields

vaultKeyEncpub
svaultKeyEncsec

s

vaultKeyEncpub
hsvaultKeyEncsec

hs

vaultKey s

vaultKeyhs

3.5 Account Recovery

Account recovery is needed when a user has lost access to their push authenticator,
e.g., because their mobile device broke down. In such a case, access to either the
backup or recovery authenticator is required. The backup authenticator seed it stored
inside a cloud backup so switching to a new mobile device should make that
authenticator automatically available as soon as the cloud backup has been restored.
Alternatively, the recovery code has to be used.

When either the backup or recovery authenticator are used, the server side will
remove the push authenticator and all its locks from the database. The new mobile
device has to generate a new push authenticator seed and derive the necessary keys
to register it as a new push authenticator with new locks. When using a backup or
recovery authenticator, the server side only allows for replacing the primary
authenticator with a new one. Other operations are denied.

Afterwards, the new push authenticator well regenerate the vault keys of the
personal vaults by first squashing all current commits into a new, single commit that
holds the most up-to-date state. This new commit marks the start of a new Generation
in the vault. All previous commits are discarded from the server. The new commit is

encrypted with a new vaultKey s and its sensitive contents with a new vaultKey hs which
are encrypted and stored inside new locks for that vault. Old locks are discarded.

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 14 | 16

Security

Whitepaper

4 | Summary

We presented heylogin, a 2-factor secure password manager without master
password. First, we have detailed heylogin’s architecture and how keys are derived on
authenticators. Logins are stored inside commits which are encrypted with the
symmetric vault keys. These keys are encrypted with the public key of an authenticator
to form a Lock. Usernames, website URLs and other metadata are decrypted after a
browser has been paired to make them available in the overlay, even when the specific
browser is locked in the authenticator. Only in the paired+unlocked state, the
passwords are decrypted and made available to allow the automated login process on
websites. These seperate encryptions together with heylogin’s backup functionality
forms a user experience previously only known from Single-Sign On solutions.

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 15 | 16

Security

Whitepaper

References
1: Sarah Perman, et al., Why people (don't) use password managers effectively, 2019
2: , heylogin Compliance Whitepaper, 2022, https://www.heylogin.com/de/compliance/
3: Internet Research Task Force (IRTF), Elliptic Curves for Security, 2016,
https://datatracker.ietf.org/doc/html/rfc7748
4: Daniel J. Bernstein, Extensing the Salsa20 nonce, 2011, https://cr.yp.to/snuffle/xsalsa-
20110204.pdf
5: Internet Research Task Force (IRTF), ChaCha20 and Poly1305 for IETF Protocols, 2015,
https://datatracker.ietf.org/doc/html/rfc7539
6: , TweetNaCl.js, , https://tweetnacl.js.org/#/
7: Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich, Argon2: the memory-hard function
for password hashing and otherapplications, 2017,
https://www.cryptolux.org/images/0/0d/Argon2.pdf
8: , , , https://support.apple.com/en-us/HT202303
9: , , , https://security.googleblog.com/2018/10/google-and-android-have-your-back-
by.html

heylogin GmbH | heylogin.com | Date: 2022-04-06 | Version: 1.4 16 | 16

Security

Whitepaper

