

Copernicus Marine Service

COPERNICUS MARINE 8th GENERAL ASSEMBLY

BIODIVER-COAST: support for oyster aquaculture and biodiversity restoration in Galway Bay, Ireland.

T. Dabrowskia, M. García Sotillo^c, D. Pereiro^a, J. M. Garcia-Valdecasas Bernal^c, K. Lyons^a, O. Tully^a, D. Kelly^b, R. Wilkes^d, G. Nolana.

^a Marine Institute, ^b Cuan Beo, ^c Nologin Oceanic Weather Systems, ^d Environmental Protection Agency

Project in a nutshell

BIODIVER-COAST service

The service that is being developed aims to support:

- sustainable mariculture
- biodiversity restoration
- informs policy and supports policy implementation

Two Use Cases:

- mapping marine conditions (example Fig. 1)
- Iow salinity warning (example Fig. 2)

Fig. 2. Surface salinity during a wet period in March 2020.

Consortium

Marine Institute, Ireland

State agency responsible for marine research, technology development and innovation in Ireland.

Marine Institute Foras na Mara

https://www.marine.ie/

Nologin Oceanic Weather Systems, Spain

Developer of operational downstream coastal monitoring and forecasting services actively contributing to build Digital Twins of the Ocean and Coast

https://www.nowsystems.eu/

Copernicus Marine Products and Coastal model

Downscaling to Galway Bay

Global Ocean Physics Analysis 😭 and Forecast

Lon 1 = 8.88 W Lon 2 = 9.21 W

Lat 1 = 53.11 N Lat 2 = 53.28 N

Horizontal resolution = 70 m Vertical resolution = 8 sigma levels Max depth = 30 m

Model code	SWAN
Model Grid	Rectangular 0.025° and 200 m
Bathymetry	GEBCO & INFOMAR
Forcing	• 1-Hourly ECMWF 0.1°
	Copernicus GLO wave model
Forecast	+6 days (daily)
Period	
Hindcast	-7 days (weekly)
Period	
Output	• significant wave height, wave
	period, wave spectra
	• @ 3 hrs spatially
	• 20 stations @ 0.5hr
Other Domains	West Coast 0.004°

Seamless coastal service

Wave model is also part of the service

Use Case 1 – mapping marine conditions

- Operational forecasts as well as multi-year, annual, seasonal and monthly static layers were produced for several hydrodynamic parameters derived from the models (salinity, temperature, shear stress, wave kinetic energy)
- These layers are useful to understand the inter- and intraannual dynamics in the bay, identify areas under the influence of freshwater, areas with high bottom shear stress and kinetic energy and prone to excessive warming during the heatwaves
- These are all aspects of concern, as they increase oyster mortality
- The oyster mortality model, which calculates mortality based on salinity, temperature and exposure time was applied to the 10-year (2012-2021) seabed temperature and salinity series from the Galway Bay model to obtain a map of the estimated 10-year total mortality throughout Galway Bay.

Fig. Oyster mortality computed from a 10 year hindcast

Use Case 2 – low salinity warning

Copernicus Marine Service

Use Case 2 – low salinity warning

Acknowledgements

The Galway Bay model was developed as part of H2020 project FORCOAST

The government of Ireland funds the ongoing operation of the Galway Bay forecasting model by the Marine Institute

The presented service was developed as part of BIODIVER-COAST project, funded under the Copernicus Marine Service User Engagement Programme, UE 22050-COP-INNO USER

An Roinn Talmhaíochta, **Bia agus Mara** Department of Agriculture, Food and the Marine

