
Detecting Financial Fraud
Using Graph Analytics
SOLUTION BRIEF

2© 2022. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

Online fraud will cost businesses more than US$200 billion between 2020 and 2024 according to Juniper Research. This stunning

amount is driven by the increased sophistication of fraud attempts and the rising number of attack vectors. And, while banks are

fighting back harder than ever, fraudsters have adjusted their techniques to remain below the radar.

Fortunately banks have a powerful weapon in the war against fraud: graph analytics. Advanced analytics in graph databases can

uncover suspicious patterns of online payment activity in ways that other approaches cannot – helping to stop fraud before it can

be committed.

Gartner has identified graph analytics as one of the ten data and analytics technology trends that can transform businesses. It

predicted the sector will grow by 100% annually through 2022 “due to the need to ask complex questions across complex data,

which is not always practical or even possible at scale using SQL queries”.

It’s no surprise, then, that companies like China UnionPay, the largest payment card provider in the world, are investing in graph

analytics, along with four of the five top global banks in the world.

Graph techniques can analyze thousands of customer data points – and the crucial relationships between them – to deliver fraud

alert scores in real time. Graph can be used for fighting financial fraud by analyzing the links between people, phones, and bank

accounts (among other things) to reveal indicators of fraudulent behavior, not only helping banks pinpoint suspicious activity in a sea

of data but also giving them the tools to explain what’s going on.

A key feature of graph is its ability to perform at speed, especially compared to relational database solutions. Banks have been

doing fraud detection for years, but one of the things that graph brings to the party – apart from depth of analysis – is speed. While

relational databases and SQL depend on bulky table joins, graph is less memory intensive and able to handle a greater query load.

Detecting Financial Fraud Using Graph Analytics

Advanced analytics in graph databases can uncover suspicious patterns
of online payment activity in ways that other approaches cannot.

Online fraud will cost
businesses more than

US $200 billion between
2020 and 2024 according

to Juniper Research

2

https://www.juniperresearch.com/press/press-releases/online-payment-fraud-losses-to-exceed-200-billion
https://www.eweek.com/database/why-experts-see-graph-databases-headed-to-mainstream-use

3© 2022. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

Fraud is Becoming More Complex
Fraud detection systems tend to rely on looking at transactions that exceed preset levels or people who try to max out a

credit card with no intention of paying it off. These types of suspicious transactions are easy to detect because they rely

primarily on the information in the transaction itself, looking at the amount, the destination, or other properties that might

generate warning signals.

However, fraud has become more complex than that as fraudsters have learned to work across multiple accounts, including

mule accounts not directly controlled by or associated with them, such that individual transactions look ordinary and would

not trigger an investigation.

Fraudsters will employ hundreds of accounts to transfer the money in a technique known as ‘smurfing.’ In this technique,

money that needs to be moved is disbursed to accounts in quantities small enough to avoid triggering automated reporting

limits. The money is then ‘layered;’ that is, mixed, divided, and transferred from these accounts to other accounts, with

the history of the money becoming more and more difficult to trace with every transfer. Ultimately, it is funneled to its final

destination, its origins virtually lost in a long and complex audit trail.

Layering requires a certain amount of setup as the fraudster must create all of the accounts they need with the banks. Once

this is in place, it becomes easy to move large amounts of money quickly thanks to electronic banking APIs (application

programming interfaces). This can be done by hijacking existing accounts, opening new fraudulent accounts using synthetic

identities, or even colluding with real customers to procure the use of their accounts.

This is a network of activity, a pattern which can be traced and matched if you have the computational systems and

resources in place to do it.

4© 2022. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

SQL Versus Graph

 SQL databases are
optimal for processing

transactions, they struggle
with relational analysis as

the number of connections
or hops between data

points grows.

4

Figure 2: Complex table joins needed with a
relational database for fraud analysis

Many financial institutions have built their fraud detection systems on the backs of their legacy SQL databases because that’s

where the data is stored. While these SQL databases are optimal for processing transactions, they struggle with relational

analysis as the number of connections or hops between data points grows.

To understand fraud, you have to examine a lot of contextual information. This brings in a number of different types of data –

accounts, individuals, transactions, etc – all of which, in a relational database, would be stored in separate tables. To link this

data together, you have to make a table join, a temporary construct created in memory which allows you to read across the

associated data and extract the information that you require.

Table joins are computationally expensive. If you are looking at just one type of data, e.g. the transaction table, a relational

database works fine, but in real-world situations, we work with mixed data which means we are constantly joining different types

of data together. So, if you store your mixed data in several different tables, every time you want to link that data together, you

have to create a table join. Clearly, the greater the depth of your enquiry, the more tables you are going to have to retrieve which

is, in turn, going to affect your search time. In fraud detection – where you are tracing money across many people, accounts, and

transactions – it may be necessary to access a number of tables.

5© 2022. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

Consider the problem of fraud. Suppose Alice wants to send $1 million to Bob without setting off internal bank alerts. She divides

the money into 110 transactions of around $9,100 each to stay below the mandatory reporting threshold of $10,000. The funds are

then deposited into 110 separate fabricated bank accounts that Alice created with a real people info database she purchased on the

dark web. Then, each of these accounts divides its money into transactions of between $100 and $1000 and sends them to other

intermediary accounts, some of which may be new and some of which Alice may have used previously, a process that’s repeated

several times. Each step is another layer and adds another hop to the depth of transactions that fraud detection systems would

need to analyze.

After ten layers, there have been thousands of transactions and the source of the money in each account (which never exceeded

$10,000) is well and truly obscured. Then all the accounts disburse their money to Bob. A cursory examination of the bank records

would show Alice’s company paying a lot of suppliers and Bob’s company being paid by a lot of customers. No red flags because

these scenarios fit the pattern of normal business behavior.

However, if you could map it visually, it would show the money flowing out from a single artery into a lot of capillaries and then back

into one main artery, revealing that there was a transaction for $1 million between Alice and Bob. Easy if you knew in advance which

customers were fraudsters, but you don’t. Alice’s operation involves a lot of data stored in a number of different tables. There are

bank accounts, bank customers (Alice and all of her aliases), and transactions. As a fraud investigator, you are looking at thousands

of Alices paying money to suppliers and asking yourself, which one of these Alices is a fraudster? Most of them will be honest

business people but you’ll have to examine all of their transactions to a certain depth to understand which one of them warrants a

red flag for further investigation.

Computationally, you have to create massive table joins to understand what is happening in this scenario – a table join that is big

enough to track all transactions from all of your Alices through ten layers of payments to all of your Bobs. That is an unfeasibly large

table join. If you tried to make your table join more manageable by reducing the number of layers, you would completely miss the

connection between Alice and Bob’s fraudulent scheme.

In graph, you don’t analyze connections by creating joins because the data is stored in a pre-linked format. In the fraud scenario,

the connections between the person, the bank account, and the transaction are all directly linked to the transaction itself. Graph is

optimal for running algorithms for finding connections. Community detection algorithms, for instance, help to detect the fact that

Alice was using a host of mule accounts to send her money to Bob. Path detection would quickly identify that Bob was frequently

the final destination for her money. And in the case where you found a community, but didn’t know who was running it, centrality

algorithms help identify Alice as the kingpin who has fabricated all these accounts with stolen identities. Graph also scales up well in

this scenario, requiring only proportional increases in power to handle millions to billions of separate transactions.

5

Graph is optimal for running

algorithms for finding connections

and scales up well, requiring only

proportional increases in power

to handle millions to billions of

separate transactions.

6© 2022. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

Graph for Large Dataset Analysis

6

A key concept in understanding graph databases is index-free adjacency. While SQL systems have processing overheads associated

with every index lookup, in graph the links to associated data are loaded with every node. A key distinction here is the difference

between native and non-native graph systems. There are a number of non-native graph solutions built on top of other databases

which don’t have index-free adjacency and are therefore not optimized for fast graph traversal. Relationship lookups in non-native

graph solutions are slower because of the need to fetch the address of the related node from a central index. By contrast, native graph

solutions store this in the node itself.

Relational databases are optimized to retrieve data row by row, with link analysis not a primary concern. With graph, link analysis is its

primary function. Another feature of index-free adjacency is that it doesn’t put extra overheads on your system as your database grows.

While relational databases get slower as they expand due to indexes adding more and more layers of indirection, each requiring another

expensive lookup, native graphs enjoy constant performance making them ideal for collecting ever greater amounts of contextual data,

which is essential in fraud analysis.

Scale is an issue to consider in graph. Banks have millions of customers and plenty of external and internal reference data sources that

usually adds up to terabytes of data. For this you need not just a native graph database - you need a distributed graph database. This

allows you to put some of your data on one server, some more data on another server, and so on, without the user having to worry

about how it is partitioned. A distributed, native graph solution allows you to implement algorithms for search, pathfinding, clustering,

centrality, dependency analysis, and similarity in ways that simply won’t perform at scale in a relational database.

Figure 3: Example of graph
schema used in fraud
detection (screenshot
of TigerGraph)

7© 2022. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

One of the ways to detect fraud is to find groups of transactions or persons

that have an unusually high number of interconnections. To detect such

groups or communities, you need an algorithm which can efficiently study

and assess the entire graph’s structure. One such community detection

algorithm is Louvain modularity or, simply, the Louvain method.

Louvain has so far been the most effective version of a host of algorithms

which try to maximize a score called modularity. Other algorithms, or

algorithms which try to shortcut Louvain by using random sampling, either

don’t get as good scores, don’t get consistent scores, or take longer to run.

Other algorithms for working on fraud include PageRank. As an algorithm

for determining the influence of web pages based on page-to-page referral,

it can also identify who is “pulling the strings” in a community of suspicious

financial transactions.

One of the points that is sometimes raised about graph is that people say

we can already do fraud detection with SQL queries, which is true when

you are looking at a limited number of lookups. This is fine for doing

backward analysis where you have an idea of where you want to look for

suspicious activity.

However, if you want to examine all connections – as in the case where

you don’t know which transactions are suspect and you want to find out –

that is another case altogether. The SQL query quickly becomes large and

unmanageable as the dataset grows because now you want to jump through

all of those hops and find out where they went. The problem becomes even

more complex because as you work your way through the data, you may

need to look left (upstream) and right (downstream) while performing a what-

if query – all of which would be complex and difficult to maintain with SQL.

7

Graph at Work

So, three things that push SQL over its limit are the history, the present and

the what-if question – together they kill SQL which is why people are looking at

graph to solve these problems. As SQL works its way through a tree or network

diagram, examining the nodes, fraud queries and algorithms will want to

examine nodes to the left and the right of the active node, and a separate SQL

query has to be written for each of these hops. To do this, you have to know in

advance – which you won’t – the structure of the network and which branches

and nodes will need to be explored to be able to write the SQL. In some cases,

you will need to backtrack and traverse other branches as part of your query

which may in turn throw up new paths to traverse.

Figure 4: The anti-money laundering workflow using machine learning

Fraud Detection Workflow with Machine Learning

8© 2022. ALL RIGHTS RESERVED. | TIGERGRAPH.COM |

Graph and machine learning can work together to deliver even better results. Machine learning (ML) alone may take the accuracy of

fraud signals as high as 70-80%, but combining it with graph can raise it to 90% or higher.

It’s usually not feasible to run ML algorithms directly on live data because it’s computationally expensive and the data is constantly

changing. However, ML systems offline can ingest historical data generated from the graph. From this data, patterns can be

generated which are indicative of suspect behavior. The patterns can then be loaded into the graph and run against pattern-

matching algorithms to flag suspect activity.

You can also use AI to create entirely new decision trees, starting by generating large numbers of random rules. This ‘forest of

decision trees’ is then applied to data to see which ones work and which don’t, with rules weeded out based on their effectiveness.

It is a useful technique for creating unique rules that would otherwise not be created, but it’s only possible if you have all the data

available at the same time, which is what graph is good at.

A big concern with automated fraud detection systems is the issue of false positives. Firstly, it can absorb a lot of time and effort from

human analysts dealing with the false positives and filtering out the hits that really need more investigation. And secondly, there is a

concern about the impact on customers – as one telecoms company explained to us, they want to take automated fraud detection

slowly because one of their biggest fears is getting a false positive and losing a legitimate customer over it. If you approach fraud

detection with graph without sufficient preparation, you can run the risk that suddenly everything looks like fraud.

However, graph feeds very well into machine learning – it is very good at generating data for training ML systems because it is very

good at producing explainable models of what it has detected. Rather than simply giving something a score based on heuristics,

graph can generate data on the links between different objects in the database which can be fed into ML systems for further

analysis. This explainability extends to showing humans what’s going on, as the linking data can be used to draw detailed diagrams

from which humans can infer the relationships between the objects and ask further questions. The region of confidence (ROC) curve

tells you how confident you are in the decision that a machine made. Some decisions you can accept from the machine alone based

on the score. But if your confidence is below 50-60%, and depending on the value of the transaction, you might want to forward this

to a human analyst. The analyst really needs to understand why the machine thought there was a 50% chance that the transaction

was bad – you don’t want to force the human to go back to the beginning to work out why. You want them to take a case from the

system and work it quickly and confidently with all the information to hand.

Graph databases are good at showing results graphically, making explainability one of its key strengths. This combined with the

ability to explore contextual data makes it an asset in fraud detection. Feedback from the analysts can also be fed into ML and graph

systems, creating a virtuous circle between humans and machines which can make fraud teams more efficient.

8

Graph and Machine Learning

Banks are expected to
spend $7.1 billion on

AI in 2020, growing to
$14.5 billion by 2024, on
initiatives such as fraud

analysis and investigation,
according to market

research firm International
Data Corp.

Wall Street Journal, August 26, 2020

“Visa unveils more powerful AI tool that
approves or denies card transactions”

https://www.wsj.com/articles/visa-unveils-more-powerful-ai-tool-that-approves-or-denies-card-transactions-11598436001
https://www.wsj.com/articles/visa-unveils-more-powerful-ai-tool-that-approves-or-denies-card-transactions-11598436001

9© 2022. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | 9

China UnionPay is the world’s largest payment card provider. In 2017 it reportedly moved the equivalent of $15 trillion over its

network. For the bank, the switch to graph was driven by the need for massive scale and efficiency. With its previous relational

database system, it was infeasible to do any fraud checking or even in many cases to detect when accounts went bad.

Graph allows the bank to perform these checks at speed and scale in ways it couldn’t before. But it goes beyond simple fraud

detection and account health checking, because once they had this in place, they were able to begin applying rules to more than

just the transaction itself which allowed them to add context to their investigations. One system analyzes historical transaction data

and develops rules that can then be loaded into the live production database in the form of patterns to be matched. Once they have

defined a subset of accounts and transactions that they are interested in, they are able to run complex algorithms like centrality and

PageRank against a subgraph to expose new business intelligence.

Based on the confidence level of the result, suspect transactions can either be blocked automatically or passed to a human

investigator to make the final determination. They in turn can use subgraphs to conduct further investigations. Of course, each

financial institution operates within its own domain, so approaches will vary considerably. But the combination of graph and ML-

based pattern mining provides an invaluable tool for combating fraud in a rapidly evolving financial environment.

Case Study - China UnionPay Graph is allowing China
UnionPay to perform

fraud checking at speed
and scale in ways it

couldn’t before.

Learn more and download TigerGraph for free
https://www.tigergraph.com/solutions/fraud-detection/

https://www.tigergraph.com/solutions/fraud-detection/

About TigerGraph
TigerGraph is the only scalable graph database for the enterprise. TigerGraph’s proven
technology connects data silos for deeper, wider and operational analytics at scale. Four
out of the top five global banks use TigerGraph for real-time fraud detection. Over 50 million
patients receive care path recommendations to assist them on their wellness journey. 300
million consumers receive personalized offers with recommendation engines powered by
TigerGraph. The energy infrastructure for 1 billion people is optimized by TigerGraph for
reducing power outages. TigerGraph’s proven technology supports applications such as
fraud detection, customer 360, MDM, IoT, AI, and machine learning.

The company is headquartered in Redwood City, California, USA.
Follow TigerGraph on Twitter at @TigerGraphDB or visit www.tigergraph.com

© TigerGraph, Inc. 2022 All Rights Reserved.

