

What We Do?

LiqSure makes treatment of industrial effluent faster and cheaper.

How It Works?

STEP I

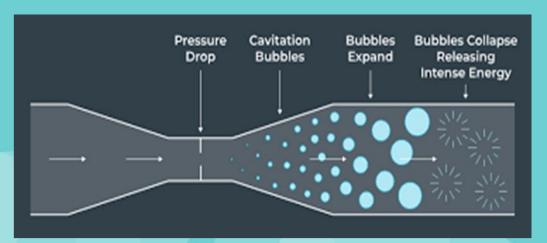
Install a LiqSure HC System STEP 2

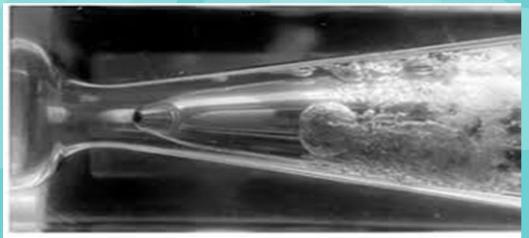
your effluent in batches

STEP 3

cheaper biological treatment of effluent

Our Customers


Sewage Treatment Plants(STP)


Septage Wastewater Treatment Plants(SWTP/FSTP)

Effluent Treatment plants(ETP)

Zero-Liquid-Discharge Plants(ZLD)

Unique Insight

1.
$$H_2O \rightarrow *H + *OH$$

2. OP + *OH
$$\rightarrow$$
 CO₂ + H₂O + DI

3. DI + *OH
$$\rightarrow$$
 CO₂ + H₂O

(H*, *OH, HO2*, O*)

- OP= Organic Pollutants
- DI= Degraded Intermediates

Some more reactions

- 2. The intensity of collapse of air, N₂ and O₂ bubbles is more-orless the same, as indicated by the temperature peaks attained at the collapse of these bubbles. However, the equilibrium composition of the bubble varies due to scavenging of radicals by oxygen and nitrogen molecules present in the bubble.
- 3. For air bubble, the N₂ scavenges the H⁺, O⁻ and ⁻OH radical to produce various species such as NO, N₂O, NO₂, HNO and HNO₂ through the following reactions [45]:

$$N_2 + O = N + NO \tag{R.1}$$

$$N_2 + OH \rightleftharpoons N_2H + O \tag{R.2}$$

$$N_2 + \cdot OH \rightleftharpoons N_2O + H \cdot \tag{R.3}$$

$$N_2 + OH \rightleftharpoons NH + NO \tag{R.4}$$

$$N_2 + H \rightleftharpoons N_2 H$$
 (R.5)

$$N_2 + H : \rightleftharpoons NH + N \tag{R.6}$$

$$N + OH \rightleftharpoons NO + H$$
 (R.7)

$$N_2O + O \rightleftharpoons 2NO$$
 (R.8)

$$NO + OH \rightleftharpoons NO_2$$
 (R.9)

$$NH + OH \rightleftharpoons NH_2 + O$$
 (R.10)

$$NH_2 + O \rightleftharpoons H + HNO \tag{R.11}$$

$$HNO + O \rightleftharpoons NH + O_2$$
 (R.12)

$$HNO + O \rightleftharpoons NO + OH$$
 (R.13)

$$HNO + OH \rightleftharpoons NO + H_2O \tag{R.14}$$

However, O₂ reacts with these species to regenerate O and OH radicals through the following reactions:

$$N + O_2 \rightleftharpoons NO + O \tag{R.15}$$

$$NO + O_2 \rightleftharpoons NO_2 + O$$
 (R.16)

$$NH + O_2 \rightleftharpoons HNO + O \tag{R.17}$$

$$NH + O_2 \rightleftharpoons NO + \cdot OH \tag{R.18}$$

$$N_2 + O_2 \rightleftharpoons N_2 O + O \tag{R.19}$$

O' radicals also react with H' and 'OH radicals to produce HO'₂ radical as follows:

$$H \cdot + O_2 \rightleftharpoons HO_2 \tag{R.20}$$

4. For O₂ bubbles, the yield of H₂O₂ and O₃ is much higher than other bubbles due to extensive scavenging of O; H and OH radicals by the O₂ molecules through the reactions:

Type of Industrial Effluent	%COD removal
Pharmaceutical	~60%
Textile	>70
Distillery	>75
Personal & Homecare	>85
Ice-Cream	>85
Industrial Leachate	>40
Sewage Wastewater	>90
Septage Wastewater	>85
СЕТР	~40% COD >50% Ammoniacal N ₂

TREATED WITH LIQSURE

Team

Prasad Chavhan

BE, Chemical Engineering

University of Mumbai

Dr Sarjerao Doltade
PhD, Chemical Engineering
ICT (formerly UDCT), Mumbai

Pavan Prasad

BE, Chemical Engineering

University of Mumbai

Supporters

Prof Aniruddha Pandit
Vice-Chancellor
ICT (formerly UDCT), Mumbai

Prof SuryaKumar S

Professor

Mechanical and Aerospace, IIT Hyderabad

Dhruv Gupta
Chief Operating Officer
iTIC Incubator at IIT Hyderabad

LiqSure brings to You

info@liqsure.com | 0091 797 756 6474

100 KLD Commercial Plant

